

Towards Supporting the Specification of Context-Aware

Software System Test Cases

Andréa Cristina de Souza Doreste and Guilherme Horta Travassos

Systems Engineering and Computer Science Program

COPPE

Federal University of Rio de Janeiro, Brazil
{doreste, ght}@cos.ufrj.br

Abstract. In Software Engineering, context can be understood as the overall set

of information used to characterize the situation of an entity. A software system

is context-aware if it uses the context to provide relevant information or services

to the user. Nowadays, different types of software systems with a profound im-

pact on the user’s life can be considered context-aware (e.g., ubiquitous and In-

ternet of Things software systems). Therefore, it is crucial to guarantee that they

behave correctly. Software Testing is the primary process for verifying system

behavior. Because of the particularities of Context-Aware Software Systems

(CASS), conventional testing methods are not enough to test such systems. Based

on that, we propose CATS#, a technique to support software engineers with the

specification of CASS test cases and capture not only the context itself but its

variation as well. CATS# is an evolution of the CATS (Context-Aware Test

Suite) Design technique. It introduces two relevant evolutions: test case models

and a new test template. The test case models were proposed after we searched

for context-aware applications through the literature and realized that the context

could affect the test process in different manners. The test template was proposed

to capture the variation of context by specifying which variation should occur

during the test case and when it should occur. We selected one example applica-

tion to apply our technique, deriving different types of test cases and showing its

relevance in these initial steps.

Keywords: Context-Aware Software System; CASS; Software Testing

1 Introduction

Over the last few years, many contemporary software systems having a profound

impact on society are emerging. Such systems include solutions regarding Smart Cit-

ies, the Internet of Things, Cyber-physical System (CPS), Self-driving cars, and many

other modern systems susceptible to the context and its variation. Moreover, like any

other software system, they must adequately behave after their deployment. A common

feature among such systems is their dependency on the variation of context. Some re-

cently reported accidents with autonomous vehicles and jet airplanes have shown the

damage is enormous when the variation of context cannot be appropriately verified.

2

However, it is crucial to validate the behavior of context-aware software systems

(CASS) regarding the variation of context before their deployment.

Software Testing is the primary process for verifying the behavior of a software sys-

tem. Due to the particularities of CASS, conventional testing methods are, usually, not

sufficient. There is a lack of software technologies to test CASS [1]. Despite this fact,

these systems still need to be adequately tested because, like any other system, they fail

[2]. Therefore, these fails must be revealed, and the defects identified and fixed before

the system reaches the final users. However, a lack of testing technologies for such

software systems does not contribute to mitigating their failure after deployment. That

is why it is essential to propose new software technologies to support testing strategies

for CASS.

The CATS (Context-Aware Test Suite) Design technique [3] resulted from the CAc-

TUS (Context-Aware Testing for Ubiquitous System) Project, which investigated test

strategies for ubiquitous systems. CATS has the purpose of identifying the context var-

iables and thresholds (THR) to describe the test oracle and, consequently, the test cases.

The test oracle would be the combination of context variables, identified thresholds,

and expected behaviors once reaching the thresholds.

CATS Design was our first step towards understanding how to test CASS. It covers

most of the issues regarding the specification of test cases for CASS. However, it does

not include the perception that the variation of context can affect the test cases in dif-

ferent ways. Therefore, we propose CATS# as an evolution of CATS Design. Based

on what we observed on working in the development of and testing with CASS, we

introduce two new features: the test case models and a new test template. Section 3

depicts the reasons why these features contribute to evolving the CATS Design.

Besides this introduction, there are five more parts in this article. Section 2 has the

definitions; Sections 3.1 and 3.2 present the modifications we are proposing; Section

3.3 shows one example application; Section 4 shows our final considerations and next

steps.

2 Basic Definitions

2.1 Context-Aware Software Systems

In our work, context is the overall set of information used to characterize the situation

of an entity considered relevant to the interaction between an actor, which can be a user,

and an application [4]. Furthermore, while the context is, in some way, abstract, sub-

stantial, and continuous, we can discretize it through representative context variables

(CVs). Each CV represents a piece of specific information about the context [3], as can

be seen in Fig 1.

Fig 1. Context and Context Variables

3

A software system is context-aware, whether it makes use of context variables to

provide relevant information or services to their actors. For the sake of simplicity, there

are two types of CASS. The first one (T1) only uses the information regarding the con-

text to support its behaviors (e.g., a system responsible for sensing the temperature and

display it to the user). The second one (T2) has its behavior influenced by the variation

of context (e.g., the same previous system using the temperature to determine, automat-

ically, whether turning the air-conditioner ON or OFF) [4].

Nevertheless, depending on the type of the software system, being context-aware is

not all. Context is something dynamic; it can change anytime, influencing the T2 sys-

tem´s behaviors on the fly. Thus, the CASS must be ready to respond and adapt itself

appropriately to the variation of context. As so, their testing.

2.2 Software Testing

Software testing is responsible for verifying software system behaviors and revealing

failures [3]. A Test Case (TC) is composed of input values (test input), constraints under

which the test item must be executed (conditions), and the expected behaviors from the

software under those constraints (expected results) (Fig. 2) [5].

Test Scripts would use the Test Cases during the Test Process for the testing of a

Test Item into a predefined Test Environment to produce a set of Outputs. In the end,

the obtained outputs (behaviors) should be compared with the expected results specified

in the test cases (Oracle) to verify the success or failure [3]. Obtained and expected

results are predictable and directly comparable in this case.

Fig 2. Conventional Test Model

3 Some Issues Regarding CASS Testing

The variation of context can affect the test process in two different ways: the input

and/or the conditions of the test cases, which naturally affect the expected results. Con-

sequently, sometimes, the variation of context will occur during the test execution by

varying the environmental conditions. Therefore, to prepare the testing for this situation

correctly, it is necessary an evolved test template. It should not just capture the variation

of context (as it is in CATS) but also when such a variation should occur as well. It is

not an easy task to abstract it in general scenarios, but we believe it can be done in

particular cases. To support our discussions and represent these differences, we present

a conceptual model in Section 3.1 and a test template in Section 3.2.

4

3.1 Testing Models

Section 2 illustrates a conceptual testing model for conventional software systems, but

when the variation of context matters, a new set of information must be taken into con-

sideration, as well as its influence in the test process. It has been said that the variation

of context could affect the test inputs and conditions and, consequently, the expected

results. Thus, when generating a model for testing CASS, it must be taken into consid-

eration that each information on the test input and test conditions will represent and be

attached to the context.

In this way, as Fig 3 shows, in CASS Testing Models, the input should be composed

by a tuple (i, cx), where i is an element from the Input Domain, and cx is the context it

represents. The same occurs with Test Conditions (c, cx) and with the Expected Results

(e, cx) where c and e will be elements from the Conditions Domain and Expected Re-

sults Domain, respectively.

Fig 3. CASS General Test Model

It is important to note that the context element in E will always be the same one in I

or C because a specific expected result would be a consequence of the context. Equa-

tions (1) and (2) demonstrate these relations:

 I = {i0, i1}, C = {(c2, cx3), (c4, cx0)}, E= {(e0, cx3), (e2, cx0)} (1)

 TC = {({i0, i1}, {(c2, cx3), (c4, cx0)}, {(e0, cx3), (e2, cx0)})} (2)

5

Thus, this model can represent four situations, as summarized in Table 1:

• When there is no context (DCX = { }), the model gets back to the Conventional Test

Case Model (Fig. 3.b);

• When the context influences just the input, and the conditions remain constant (Fig.

3.c), the variation of context does not happen during the execution of testing. The

only consequence will be increasing the number of test cases;

• When the context influences the conditions, and the inputs remain constant (Fig.

3.d), we need a new test strategy able to capture the variation of context during the

test execution, and;

• When the context influences the input and the conditions simultaneously (Fig. 3.e),

we have the complete and general CASS Test Case Model. In this case, there is a

need to use test environments supporting the variation of context during the test ex-

ecution. As far as we are aware, there is no such environment available yet [8].

Table 1. Test Situations

 Input (I) Condition (C) Expected Result (E)

Conventional Test

Case Model
Static Value Static Value Static Value

CASS Test Case

Model A
Dynamic Value Static Value Dynamic Value

CASS Test Case

Model B
Static Value Dynamic Value Dynamic Value

CASS Test Case

Model C
Dynamic Value Dynamic Value Dynamic Value

3.2 Testing Template

The first column of Table 2 shows the fields of CATS Design’s test template. It has

the necessary information used in conventional systems and new fields specific for

CASS (in Italic). Its objective is to specify every known threshold for each context

variable related to the Test Case. Thus, if one of the specified contexts varies during

the test execution, the Expected Output should be specified as well.

We intend to cause a variation of context (regarding a specific CV) during the test

case execution while keeping all the other CV fixed. In doing so, some fields must be

changed, and others added to the CATS template. The result is presented in the second

column of Table 2. The field “Fixed Conditions” specifies which CV is static; the “Var-

ying Conditions” field contains how the conditions must variate, crossing the previ-

ously established threshold. Finally, the CATS# template gains a structured flow simi-

lar to use cases. The tag “ci” is added to the Test Steps, indicating that conditions ci

must vary just before the execution of the next test step. A filled template can be seen

in Table 5.

6

Table 2. CATS Template X CATS# Template

CATS Template CATS# Template

Test Case ID Test Case ID

Test Objective Test Objective

Precondition Precondition

X Fixed Conditions

Test Input Test Input

Test Steps Test Steps

Relevant Context Variables Varying Conditions (C)

Known Threshold X

Expected Result for each Threshold Expected Result (E)

Postconditions Postconditions

3.3 Proof of Concept

Our proposal is at its initial stage. To observe its initial feasibility, we selected an ap-

plication by Afanasov, Mottola, and Ghezzi [6] to use CATS#. It is a Wildlife tracker

where battery-powered nodes from a WSN (wireless sensor network) are embedded in

collars and attached to animals. Each node has a GPS sensor, two low-power short-

range radios working as proximity sensors, and small solar panels to prolong the node

lifetime. The GPS sensor captures the pace of the animal’s movement, and it may be

disabled if the battery is running low. A proximity sensor is responsible for tracking an

animal's encounter with other animals and logging the data. Another sensor is respon-

sible for sending the collected data to the base-station whenever they are near. More

information about the application can be found in [6]. After applying CATS#, we ob-

tained the results presented in Table 3.

Table 3. Results after applying CATS# for Wildlife Application

Context

Variable
Effect Threshold

Test

Situations

Battery

Level

> threshold, GPS

status = ON

Battery Level going

down the threshold
CASS - Model B

< threshold, GPS

status = OFF

Battery Level going up

the threshold
CASS - Model B

Animal

Proximity

= YES, collect data

from encounters

Getting closer to an

animal
CASS - Model A

Base-Station

Proximity

= YES, send data to

the Base-Station

Getting closer to a Base-

Station
CASS - Model A

We selected three test cases, one from each model, to show how they will differ. As

Tables 3 and 4 show, in TC01, the "battery level" will be tested as a condition (CASS

7

Model B) related with CX0 (Bat. Level ≥ THR) and CX1 (Bat. Level < THR), and the

Expected Results are “GPS Available” and “GPS Disabled,” respectively.

In TC02, "BS Proximity" will be tested as an input (CASS Model A) and is related

to CX0 (BS Proximity = NO) and CX3 (BS Proximity = YES). The Expected results

related to CX3 is "Send Data to BS" and to CX0 is "Log in GPS information."

Finally, to show the difference, TC03 specifies a conventional test case, with no

variation of context.

Table 4. Wildlife Test Cases

Id Input Context Conditions Expected Result

TC01 Animal location
CX0 Bat. Level≥ THR GPS status = ON

CX1 Bat. Level< THR GPS status = OFF

TC02
BS Proximity = NO CX0

Bat. Level ≥ THR

Log Data in the

node

BS Proximity = YES CX3 Send Data to BS

TC03 Animal location CX0 Bat. Level ≥ THR
Log in GPS

information

As we said before, conventional strategies can be used to test the CASS Test Case

Model A (see Table 1) and, consequently, TC02. Therefore, we selected TC01 to use

our proposal test template (Table 5). It shows that, after the third step, the Battery Level

should variate as indicated in c1, and the Expected Result for this variation is “The

system disables the GPS.” The template also shows that the variables Animal and BS

proximity should be kept constant. Finally, the “GPS status” in Precondition and Post-

condition changes because of the variation of context occurring during the test execu-

tion.

Table 5. CATS# Template for a TC from Wildlife Application

Test Id TC01

Test Objective Verify the variation of the CV Bat. Level

Precondition

─ The BS is out of reach

─ Battery-Level ≥ THR

─ Solar Panel is deactivated

─ GPS status = ON

Fixed Conditions
─ Animal proximity = NO

─ BS proximity = NO

Input (I) ─ GPS location (lat, long)

Test Steps

1. Starts the node

2. Change the node position

3. The node starts to collect data (c1)

4. Change the node position

Varying Conditions (C) c1. Bat. Level ≥ THR → Bat. Level < THR

Expected Result (E) The system disables the GPS

Post condition
─ GPS status = OFF

─ Battery-Level < THR

8

4 Final Considerations

As can be seen in [1], there is a lack of technologies to test CASS. Also, we realized

that the context had been treated as someway static most of the time. Besides, the dif-

ferent ways of how the context affects testing are not even noticed. Thus, it cannot be

captured by the test activity. CATS# is an attempt to evolve CATS adopting the learn-

ing from the literature. We propose the CASS testing models and the new test template

to help software engineers understand the variation of context and adequately plan the

testing for CASS. In this way, each fulfilled test template will represent a different

context with its expected result and the test script necessary for the future test execution.

Also, the template can be used in different levels of testing, in simple scenarios (such

as varying one CV) or more complex situations (where the CVs will interact).

The application used in section 3.3 is simple. However, it intends to demonstrate the

different test situations involved in the testing of CASS, as well as the influence of the

variation of context in the test process.

Finally, CATS# is ongoing research. We intend to modify the entire CATS process

to make it simple and easily applicable. Besides, after all the modifications, experi-

mental studies will be conducted to adequately evaluate the behavior of CATS#, spec-

ifying test cases for different test situations and applying it in more complex scenarios.

We are aware that forcing a variation of context as specified is not always an easy task

when performing testing. Thus, in the future, we intend to propose a tool to control the

Test Environment and, consequently, setting the context-free during testing [8].

Acknowledgments

The CNPq (Brazilian National Council for Scientific and Technological Development)

and CAPES (Brazilian Coordination for the Improvement of Higher Education Person-

nel) support this research. Prof. Travassos is a CNPq researcher (304234/2018-4).

References
1. Amalfitano, D., Matalonga, S., Doreste, A., Fasolino, A. R., Travassos, G. H.: A Rapid Re-

view on Testing of Context-Aware Contemporary Software System, Technical Report,

UFRJ, Rio de Janeiro (2019). http://www.cos.ufrj.br/uploadfile/publicacao/2910.pdf

2. Charette, R. N.: Why software fails. IEEE Spectrum, 42(9), 42-49 (2005).

3. Silva, F. R.: CATS Design: A Context-Aware Testing Approach, Master Dissertation,

UFRJ, Rio de Janeiro, (2016). http://www.cos.ufrj.br/uploadfile/publicacao/2596.pdf

4. Dey, A. K., Abowd, G. D.: Towards a better understanding of context and context-aware-

ness, Technical Report, Georgia Institute of Technology, Atlanta (1999),

https://smartech.gatech.edu/handle/1853/3389

5. Dias-Neto, A. C.: Uma infra-estrutura computacional para apoiar o planejamento e controle

de testes de software, Master Dissertation, UFRJ, Rio de Janeiro (2006).

http://www.cos.ufrj.br/uploadfile/publicacao/2704.pdf

6. Afanasov, M., Mottola, L., Ghezzi, C.: Software adaptation in wireless sensor networks.

ACM Transactions on Autonomous and Adaptive Systems (TAAS), 12(4), 18 (2018).

7. Mirza, A. M., & Khan, M. N. A.: An Automated Functional Testing Framework for Context-

aware Applications. IEEE Access, 6, 46568-46583 (2018).

8. Matalonga, S., Travassos, G.H.: Testing context-aware software systems: Unchain the con-

text, set it free!, Proc. 31st CBSOFT/SBES. ACM (2017).

http://www.cos.ufrj.br/uploadfile/publicacao/2910.pdf
http://www.cos.ufrj.br/uploadfile/publicacao/2704.pdf

