
TestTDO: A Top-Domain Software Testing Ontology

Guido Tebes, Luis Olsina, Denis Peppino and Pablo Becker

GIDIS_Web, Facultad de Ingeniería, UNLPam, General Pico, LP, Argentina
guido.tebes92@gmail.com; olsinal@ing.unlpam.edu.ar;

denispeppino92@gmail.com; beckerp@ing.unlpam.edu.ar

Abstract. One of the Software Engineering (SE) areas that supports quality as-

surance is testing. Given that specific processes, artifacts, methods and ultimately

strategies for software testing involve a large number of domain concepts, it is

valuable to have a robust conceptual base, that is, a software testing ontology that

defines the terms, properties, relationships and axioms in an explicit and unam-

biguous way. Ontologies for instance foster a clearer terminological understand-

ing of process and method specifications for strategies, among many other bene-

fits. After analyzing both the results of a conducted Systematic Literature Review

(SLR) of primary studies on software testing ontologies and the state-of-the-art

of test-related standards, we decided to develop a top-domain ontology that fits

our goals. TestTDO is built in the framework of a four-layered ontological archi-

tecture, which considers foundational, core, domain and instance ontologies. In

this paper, we discuss aspects of the development, evaluation, verification and

validation of the TestTDO conceptualization.

Keywords: Software Testing, Top-Domain Ontology, Ontological Architecture.

1 Introduction

Companies commonly establish and reach business goals for different types of pur-

poses. Business goals are the main goals that an organization tries to achieve. In the

statement of it always lies a purpose or intentionality. The goal's purpose is the rationale

to achieve it. Purposes can be classified into four categories such as evaluation, testing,

development and maintenance [6]. Examples of evaluation goal purposes may include

to understand, monitor, control, improve, etc. while examples of test goal purposes may

entail to find defects, review, verify, validate, among others.

To achieve the purposes of business goals, strategies may be used. A strategy is a

core resource of an organization that defines a specific course of action to follow. It

specifies what to do and how to do it. Consequently, strategies should integrate 1) pro-

cess specifications, 2) method specifications, and 3) a robust domain conceptual base –

such as an ontology. This principle of integratedness promotes, therefore, knowing

what activities are involved, and how to carry them out by means of methods in the

framework of a common domain vocabulary. In [17], to achieve evaluation purposes,

a family of strategies integrating the three-abovementioned capabilities is discussed.

Bearing in mind that already there are integrated strategies that provide support for

achieving evaluation purposes, the reader can surmise that strategies that provide sup-

port for achieving test purposes are feasible to be developed as well. Given that a strat-

egy should integrate a domain terminology, then any well-specified software testing

strategy should also have this capability for the software testing domain.

Software testing is a critical process for software quality assurance. It is also a com-

plex domain since testing has a large number of specific methods, processes and strat-

egies. All of them involve many specific domain concepts. Hence, it is valuable to have

a robust conceptual base, i.e., a conceptualized software testing ontology that explicitly

and unambiguously defines the terms, properties, relationships and axioms.

A benefit of having a suitable testing ontology is to minimize the heterogeneity and

ambiguity problems that we currently observe in the different concepts dealing with

testing methods, processes and artifacts. On the other side, one desirable feature is if

the existing testing ontologies cover concepts related to static and dynamic testing as

well as their linking with Non-Functional Requirements (NFRs) and Functional Re-

quirements (FRs) sub-ontologies. Having this feature may turn out useful for method

and process specifications to our aim, i.e., for developing a family of testing strategies.

In order to adopt or adapt an existing testing ontology, or to develop a new one, we

have followed the Design Science Research (DSR) [12, 22] approach. It is a rigorous

research methodology, which proposes the construction of artifacts for providing useful

and effective solutions to a relevant problem in a given domain. Artifacts must be in-

novative and useful solutions to a non-trivial problem. The artifact development implies

a cycle of design-construction-evaluation activities, which should iterate as many times

as necessary before the artifact (already verified and validated) is ready for its use.

To start the DSR process, the Identify the Problem/Solution (A1) activity should

firstly be performed [22]. In order to find out existing solutions (i.e., conceptualized

software testing ontologies) to our problem, we conducted a Systematic Literature Re-

view (SLR) [20], from the end of May 2018 until the beginning of March 2019. We

selected 12 primary studies documenting conceptualized testing ontologies, which were

evaluated from the ontological quality standpoint. This includes characteristics such as

structural quality, terminological coverage quality, among others [9, 21].

In general, we observed that most of them have a lack of NFRs and static testing

terminological coverage. Moreover, the 12 retrieved ontologies present opportunities

to improve their structural quality for different reasons such as: i) do not have all their

terms, non-taxonomic relationships and properties defined as well as axioms specified;

ii) do not have non-taxonomic relationships or, if they do, do not have taxonomic and

non-taxonomic relationships well balanced.

As a result, we have confirmed that there exists heterogeneity, ambiguity, and in-

completeness for concepts dealing with testing activities, artifacts and methods. Fur-

thermore, they are not directly linked with NFRs and FRs concepts. So the current test-

ing ontologies are not suitable to our aim, i.e., for terminologically nourishing specifi-

cations of methods and processes for a family of testing strategies to be developed. For

this reason, after analyzing the relevancy of the problem/solution, we have developed

TestTDO, a top-domain software testing ontology by performing two activities of DSR,

namely: Design and Develop the Solution (A2) and Execute Verification and Valida-

tion (A3). This endeavor took us seven months, which ended by the end of Sept., 2019.

In summary, this work documents aspects of the TestTDO conceptualization and its

ontological quality evaluation. In addition, by using the stated set of competency ques-

tions and a proof of concept, we illustrate aspects of its verification and validation.

It is worth mentioning that TestTDO is placed into an ontological conceptual archi-

tecture called FCD-OntoArch (Foundational, Core, and Domain Ontological Architec-

ture for Sciences [6]). It is a four-layered ontological architecture that considers foun-

dational, core, domain and instance levels. In FCD-OntoArch, ontologies at the same

level can be related to each other. Also, ontologies at lower levels can be semantically

enriched by ontologies at upper levels. For example, TestTDO at domain level is en-

riched by concepts of the ProcessCO [5] ontology placed at the core level. In turn the

latter is enriched by concepts of ThingFO at the foundational level, as we see later on.

The rest of the paper is organized as follows. Section 2 provides a summary of re-

lated work on conceptualized testing ontologies. Section 3 describes where TestTDO

is placed into FCD-OntoArch. Section 4 analyzes the main concepts, properties and

relationships included in TestTDO. Section 5 describes how TestTDO was verified,

validated and evaluated. Finally, Section 6 summarizes conclusions and future work.

2 Why is another Software Testing Ontology needed?

From the SLR performed in [20], we have selected 12 ontologies. Next, we summarize

the aim of each ontology and then show aspects related to their ontological quality.

In [8], Campos et al. use a domain ontology named RTE-Ontology (Regression Tests

Execution) and a provenance ontology model (PROV-O) to capture and provide regres-

sion tests data to support the continuous improvement of software testing processes. In

[24, 25], Vasanthapriyan et al. document a software testing ontology designed to rep-

resent the necessary testing knowledge within the software testers' context. Although

[24] and [25] share common terms, [25] has more terms related to static testing, while

[24] adds the functional and non-functional testing terms, among others. Souza et al.

document ROoST (Reference Ontology on Software Testing) [19], which aims at de-

fining a shared vocabulary to this domain to be used in Knowledge Management initi-

atives. It was developed for establishing a common conceptualization about the soft-

ware testing domain focusing on the testing process in order to support the communi-

cation between the stakeholders involved in such a process. In [2], Asman et al. present

a top-domain software testing ontology that contains general software testing

knowledge. They developed this ontology to serve as a basis for the development of

new lower level domain ontologies.

In addition, Freitas et al. present PTOntology (Performance Testing) [11] where se-

mantic technologies are explored to demonstrate the practical feasibility of developing

ontology-based applications for assisting testers with performance test planning and

management. Arnicans et al. [1] propose a methodology for semi-automatically obtain-

ing a lightweight ontology to the software testing domain based on the ISTQB glossary

[15]. However, they only built a taxonomy of testing techniques rather than a light-

weight ontology. Sapna et al. [18] use a testing ontology to represent and manage use

cases and scenarios and then to enumerate test scenarios in order to produce a test suite.

Cai et al. [7] present a construction method of software testing ontologies based on

SWEBOK [13] and one software testing classification ontology based on the ISO 9126

software quality model. Just like Arnicans et al., the documented ontology is rather a

taxonomy of testing techniques. Bai et al. developed TOM (Test Ontology Model) [3]

that is compatible with the U2TP [23]. Besides, it enriches the semantics of the U2TP

model with class properties and constraints using ontology information. Barbosa et al.

built OntoTest [4], which aims at supporting acquisition, organization, reuse and shar-

ing of knowledge on the testing domain. OntoTest has a Main Software Testing Ontol-

ogy and 5 sub-ontologies that address specific concepts of it. Unfortunately, authors

only documents in a graphic way the conceptualization of the Main Software Testing

Ontology and the Testing Resource sub-ontology. Also, the Testing Resource sub-on-

tology is rather a taxonomy. Finally, Zhu et al. developed a system prototype for testing

web-based applications that uses an ontology of software testing named STOWS [26].

It aims at facilitating the communications among agents and between agents and human

developers and testers.

The abovementioned ontologies were evaluated in [20] from the ontological quality

standpoint. The summarized results are shown in Table 1, while the full requirements

tree (i.e., the included characteristics, sub-characteristics and attributes), and the out-

comes are in http://bit.ly/OntoQualityEval. Notice that we use the metaphor of the

three-colored semaphore to identify the satisfaction acceptability level achieved. The

red color with values within the [0;60) range, in the percentage scale indicates an “un-

satisfactory” acceptability level; yellow [60;85) indicates a “marginal” level, and green

[85;100] indicates a “satisfactory” level. According to Table 1, the two best scores for

the Ontological Structural Quality (1.1) sub-characteristic were obtained by ROoST

[19] (79.08% �) followed by Asman et al. [2] (61.92% �). The remainder ontologies,

none reached even the marginal level. In general, this problem is because most ontolo-

gies do not have all their terms, non-taxonomic relationships and properties defined as

well as axioms specified. Only [19, 26] have fully specified axioms.

Table 1. Summary of the evaluation results of 12-selected ontologies through SLR regarding

their Ontological Quality (1), which includes Ontological Structural Quality (1.1), Domain-spe-

cific Terminological Coverage Quality (1.2) and Compliance to other Vocabularies (1.3) sub-

characteristics. The green color indicates “satisfactory” acceptability level (�), yellow “mar-

ginal” (�), and red “unsatisfactory” (�). Indicators' values are expressed in [%].

 [8] [25] [24] [19] [2] [11] [1] [18] [7] [3] [4] [26]

 1
40.05
�

46.62
�

51.28
�

79.54
�

66.71
�

36.41
�

32.75
�

30.95
�

25
�

32.79
�

42.36
�

39.52
�

 1.1
55
�

33.24
�

32.56
�

79.08
�

61.92
�

22.81
�

0
�

16.40
�

0
�

20.08
�

28.72
�

59.03
�

 1.2
50
�

75
�

100
�

50
�

100
�

50
�

100
�

50
�

50
�

50
�

50
�

50
�

 1.3
8.50
�

50
�

50
�

100
�

52.50
�

50
�

42.50
�

42.50
�

50
�

42.50
�

60
�

0
�

Looking at Table 1, only three ontologies reached 100% (�) in the Domain-specific

Terminological Coverage Quality (1.2) sub-characteristic, namely: Arnicans et al. [1],

Asman et al. [2], and Vasanthapriyan et al. [24]. This means that these ontologies have

at least one term related to static testing, one related to dynamic testing, one related to

functional testing and one related to non-functional testing. The remainder ontologies

only achieved 50% (�) of coverage, except [25], which met 75% (�).

Regarding the Compliance to other Vocabularies (1.3) sub-characteristic, almost all

ontologies adhere their terminology to international standard glossaries. The only ones

that do not specify the use of international standard glossaries are RTE-Ontology [8]

and STOWS [26]. On the other hand, very few ontologies take into account the termi-

nology of other core or domain ontologies, namely: Asman et al. [2], OntoTest [4],

RTE-Ontology [8] and ROoST [19]. Finally, ROoST is the only one that was built on

a foundational ontology, named UFO. Therefore, ROoST is the only ontology that

reached 100% (�) in Compliance to other Vocabularies (1.3) sub-characteristic.

Taking into account the above-summarized analysis, the best-ranked ontology with

regard to the Ontological Quality (1) is ROoST (79.54% �) –although it did not achieve

a satisfactory level. It has a lack of NFRs and static testing terminological coverage and

there is no linking with FR and NFR terms. We need a top-domain ontology with higher

coverage since we plan to develop more specific testing domain ontologies for dynamic

testing such as performance testing, among others. Furthermore, although ROoST is

embedded in a network of ontologies whose root is the UFO foundational ontology, we

consider that the ontologies (i.e., UFO and mainly its derived process core ontology)

used to enrich ROoST are a bit complex in their terminology and therefore they are

hard to adopt and harmonize their terms into the architectural components that we pre-

sent in Section 3. On the other side, even if Asman et al. [2] document a top-domain

ontology, a foundational ontology as well as its specified axioms are missing.

Therefore, the existing ontologies are not suitable enough to our aim. We have built

thus TestTDO taking into account many of their best-ranked features. TestTDO is a

top-domain ontology for software testing, which is semantically enriched with higher-

level ontologies, both core and foundational. It also serves as the basis for the devel-

opment of new lower-level domain ontologies. This ultimately will permit us to build

specific software testing strategies and their grouping into a family for test purposes.

3 Overview of the Four-layered Ontological Architecture

As commented in the Introduction Section, TestTDO is placed at the top-domain level

into FCD-OntoArch. This is a four-layered ontological architecture, which considers

foundational, core, domain and instance levels. In turn, the domain level is split down

in two sub-levels, namely: Top-domain and Low-domain ontological levels. As de-

picted in Fig. 1, ontologies at the same level can be related to each other, except for the

foundational level where there is only one ontology. In addition, ontologies at lower

levels can be semantically enriched by ontologies at upper levels. For example,

TestTDO placed at the top-domain level is enriched by concepts of the SituationCO

and ProcessCO [5] ontologies placed at the core level. In turn, both are enriched by the

concepts of ThingFO, which is at the foundational level.

ThingFO terms such as Thing, Thing Category and Assertion semantically enrich

terms of components at lower levels. Thing represents a particular or individual, tangi-

ble or intangible object of a given particular world, but not a universal category –which

is modeled by the term Thing Category. A Thing is not a particular object without its

Properties and its Powers, therefore this triad emerge simultaneously to form a unity

[10]. A Thing cannot exist or be in spatiotemporal isolation from other Things, so in a

particular situation, a target Thing is always surrounded by other context Things.

Besides, we define Assertion as a “positive and explicit statement that one or more

persons make about something concerning Things, their categories, contexts or situa-

tions based on thoughts, perceptions, facts, intuitions, intentions, and/or beliefs that

may be conceived with an attempt at furnishing current or ulterior evidence”. In order

to be valuable, actionable and ultimately useful for any science, an Assertion should

largely be verified and/or validated by theoretical and/or empirical evidence. Assertions

can be represented by informal, semiformal or formal specifications. There are Asser-

tion on Particulars for Thing, and Assertion on Universals for Thing Category. Con-

cerning Thing, by means of assertions, we can specify aspects of its substance, rela-

tions, structure, behavior, intention, quantity and quality, among others. For example,

the conceptualization of an ontology as an artifact (e.g., TestTDO in Fig. 2) represents

primarily a mixture of substance-, relation-, structure- and intention-related assertions.

(Notice that the axioms of an ontology can be thought as constraint-related assertions).

As commented above TestTDO is enriched mainly by concepts of the SituationCO

and ProcessCO ontologies. In turn, SituationCO includes terms –some borrowed from

other components- with semantic of Thing such as Person, Organization, Project and

Context Entity. In addition, it includes terms with the semantic of Assertion on Partic-

ulars such as Goal and Particular Situation. Briefly, a Person/Organization con-

ceives/establishes Goals that are operationalized by Projects. A Goal implies a Partic-

ular Situation of interest to be represented. This situation means an association between

Target Entities and none or many Context Entities. Hence, a Target Entity is surrounded

by context objects. Depending on the goal purpose, Target Entities can be for instance

a Developable Entity (e.g., a document, a source code, etc.), an Evaluable Entity (e.g.,

a work product, a system, etc.), or a Testable Entity, which has the semantic of Devel-

opable or Evaluable in a given Particular Situation.

The ProcessCO ontology [5] includes terms with semantic of Thing such as Work

Entity (Work Process, Activity, Task), Work Product (Artifact, Outcome), and Work

Resource such as Agent, Method, Strategy, Tool, among others.

Most of the conceptual components of Fig. 1 are documented in [6] and its comple-

mentary material named “Populating the Four-layered Ontological Conceptual Archi-

tecture” in Research Gate. Additionally, we make available some of these ontologies

as well as the whole documentation of TestTDO at http://bit.ly/TestTDO-Doc.

Fig. 1. Four-layered ontological architecture, which considers Foundational, Core, Domain and

Instance levels. Also, some conceptual components are shown at the corresponding level. Note

that NFRs stands for Non-Functional Requirements while FRs, for Functional Requirements.

4 TestTDO: A Top-Domain Ontology for Software Testing

Following the DSR process, while carrying out the Identify the Problem/Solution (A1)

activity, the Artifact Requirements was produced –after performing the Specify Artifact

Requirements task [22]. As part of this specification, 25 Competency Questions (CQ)

to cover the TestTDO scope were agreed upon. As indicated in the Introduction Section,

the artifact development implies a cycle of design-construction-evaluation activities,

which must iterate as many times as necessary before the artifact is communicated and

is ready for its use. Thus, we have enacted the Design and Develop the Solution (A2)

and Execute Verification and Validation (A3) activities. As a result of this cycle, the

developed TestTDO ontology comprises 43 defined terms, 48 defined properties, 36

defined non-taxonomic relationships as well as 14 axioms specified in first-order logic.

The present section and the next one describe aspects of the CQs and the resulting arti-

fact as well as analyze TestTDO verification, validation and evaluation respectively.

With regard to the 25 CQs, we have formulated questions related to Test Project,

Goal, Requirement, Entity and Work Product aspects as well as to Testing Process,

Agent, Activity and Method ones. For example, below, the CQ03 is a Work product-

related question; CQ14 is a Method-related question; CQ19 is an Entity-related ques-

tion; CQ24, a Test Requirement-related question; and CQ25, a Project-related question.

CQ03. What are the work products produced by a testing realization activity?

CQ14. What are the types of testing methods assigned to a testing design activity?

CQ19. In which particular situation is a testable entity considered a developable entity?

CQ24. Is a test requirement related to functional and nonfunctional requirements?

CQ25. For a test project that operationalizes a test goal, has the test project an associated

testing strategy that helps to achieve the test goal purpose?

We will use these CQs for the verification matrix in Section 5. The remainder CQs

can be accessed at http://bit.ly/TestTDO-CQuestions. As a result of considering the

functional and non-functional requirements specified in the Artifact Requirements doc-

ument, the TestTDO conceptualization was produced as depicted in Fig. 2. It represents

its key terms, properties and relationships in addition to its relation with Non-Func-

tional Requirement and Functional Requirement terms, which are included accordingly

in the NFRsTDO and FRsTDO components in Fig. 1. The reader can access all defini-

tions of terms, properties and relationships at http://bit.ly/TestTDO-Defs. Also, the 14

axioms’ specifications can be accessed at http://bit.ly/TestTDO-AxiomSpecs.

In the sequel, we describe aspects of the conceptualization of TestTDO using the

following convention in the text: the ontology terms begin with capital letters, the prop-

erties are italicized and relations underlined.

In order to cover project-related competency questions, TestTDO has terms such as

Test Project, Testing Management, Test Plan, Testing Lyfe Cycle and Testing Strategy.

These terms are semantically enriched with terms of the ProjectCO module depicted in

Fig. 1. Likewise, to cover goal-related competency questions, TestTDO has terms such

as Test Goal and Test Information Need, which are ‘extended’ from the GoalCO com-

ponent (Fig. 1). In a nutshell, a Test Project (and its subTestProject, if any) operation-

alizes one or more Test Goals. It associates one or more Testing Strategies, which help

to achieve the Test Goals' purposes. In addition, a Test Goal is supported by one or

more Test Information Needs. Notice that the Testing Analysis activity takes into ac-

count the statement of a given Test Information Need goal.

Fig. 2. Main terms, properties and relationships of the TestTDO ontology and its relation with

Non-Functional Requirement and Functional Requirement terms.

In order to cover the test requirement- and entity-related scope, TestTDO has terms

such as Test Requirement, Test Basis, Testable Entity, Test Item and Test Context En-

tity. These terms are semantically enriched with terms of ThingFO, ProcessCO, Situa-

tionCO and ContextCO modules (Fig. 1). Test Requirement “states, taking into account

the Test Goal purpose, what must be verified/validated of a Testable Entity (and/or Test

Item) based on the Test Basis, if any”. Note that a Test Requirement must include the

test level (e.g., unit, integration, system, acceptance, etc.) and the testable entity phase

(e.g., development, operative, maintenance, etc.). While Test Basis is an “artifact used

by Testing Design Methods for designing the Test Cases and Checklists”. So the Test

Basis represents an Artifact that may come from development and/or maintenance such

as requirements specification, architectural design, documented source code, etc.,

which in turn could be linked to Non-Functional Requirement and/or Functional Re-

quirement (terms with semantic of) assertions. Furthermore, Testable Entity is “a con-

crete object able to be tested”. A Testable Entity may have none or many Test Items,

which in turn are testable. Note that depending on the particular situation, Testable En-

tity has semantic of Developable Entity (from the FRsTDO component) or Evaluable

Entity (from the NFRsTDO component). Lastly, looking at Fig. 2, we can say that Test

Goal is derived in one or more Test Requirements. In turn, Test Requirement refers to

a Testable Entity, which can be in a particular situation with Test Context Entities.

In order to cover the process-, activity- and agent-related scope at the top-domain

level, TestTDO has terms such as Testing with semantic of Work Process, Testing Ac-

tivity, Testing Design (Activity), Testing Realization, Static Testing (Realization Ac-

tivity), Dynamic Testing, Functional Dynamic Testing (Realization Activity), Non-

Functional Dynamic Testing, and Testing Analysis (Activity). Additionally, there are

terms such as Testing Agent and Testing Role among others. These terms, their prop-

erties and relations are fully enriched with terms, properties and relations of the Pro-

cessCO module depicted in Fig. 1. Testing “is a Work Process that is composed of at

least three interrelated Testing Activities conducted to facilitate the discovery of defects

and/or the assessment of Characteristics and Attributes of a Testable Entity”. (Note that

in this definition, the terms Characteristic and Attribute –which are kind of Non-Func-

tional Requirement- are included in the NFRsTDO component. On the other side, no-

tice that “…at least three…” means that we may foresee another activity such as Testing

Context Set-up, knowing beforehand that the design of the context can be a sub-activity

of the Testing Design activity).

In order to cover the work product-related scope, TestTDO has terms such as Test

Basis, Test Specification, Test Result, and Test Conclusion Report. Particularly, Test

Specification has a semantic of Artifact and there are three types of it, namely: Test

Checklist, Test Case and Test Suite. On the other side, Test Result has semantic of

Work Product and there are two types of it, namely: Actual Result (as Outcome) and

Incident (as Artifact or document, which reports deviations –e.g. between the expected

result and the Actual Result-, anomalies –e.g. an error or a failure- or other arisen issues

during the Testing Realization). These terms, their properties and relations are fully

enriched with terms, properties and relations of the ProcessCO module [5].

Regarding Test Case, it “is a Test Specification that contains the necessary infor-

mation (e.g. preconditions, inputs, expected results and postconditions) to perform

mainly Dynamic Testing”. While Test Checklist “is a Test Specification that contains

a list of items (descriptions) to be checked in order to perform mainly Static Testing”.

We define Testing Design as a “Testing Activity aimed at designing a set of Test

Specifications (i.e., Test Cases, Test Suites and/or Test Checklists) as well as Realiza-

tion Procedures”. This activity consumes none or more Test Basis and produces Test

Specifications and Realization Procedures. Besides, we define Testing Realization as a

“Testing Activity aimed at enacting a Static or Dynamic Testing”. This activity con-

sumes one or more Test Specifications and produces one or more Test Results. Lastly,

we define Testing Analysis as a “Testing Activity that takes into account the specific

Test Information Need in order to produce a Test Conclusion Report by consuming one

or more Test Results and Test Specifications”.

It is worth mentioning at this point that a Work Process or Activity primarily repre-

sents ‘what’ to do rather than indicate ‘how’ to do it by using a particular Method and

Tool applied to a work description. Method (in ProcessCO) has two properties: proce-

dure and rules.

To cover the method-related scope at the top-domain level, TestTDO has terms such

as Testing Method with two sub-types like Testing Design Method and Testing Reali-

zation Method. For the former there are three kinds of design methods, namely: Speci-

fication-based Method (also known as black-box), Structure-based Method (white-

box), and Experience-based Method. For the latter there are two kinds of realization

methods, namely: Dynamic Testing Method and Static Testing Method.

We define Specification-based Method as “a Testing Design Method that always

uses a Test Basis for deriving Test Specifications without referring to the internal struc-

ture of the Testable Entity”. More specific types of Specification-based Methods are

Boundary Value Analysis, Equivalence Partitioning, State Transition Testing, and De-

cision Table Testing, among others, which are not shown in Fig. 2 since TestTDO terms

are a top-domain level. In addition, we define Structure-based Method as “a Testing

Design Method that uses the internal structure of the Testable Entity, and sometimes

also uses a Test Basis, for deriving Test Specifications”. Examples of it are Branch

Testing, Statement Testing, Condition Testing, and Data Flow Testing, among others.

It is important to highlight that the Testing Realization Method has a Realization

Procedure, which represents the “arranged set of Testing Realization Method's instruc-

tions or operations which specifies how must be performed the Testing Realization ac-

tivity using the Test Specification”.

Lastly, the reader can observe that a Testing Design (Activity) has assigned one or

more Testing Design Methods, while a Dynamic/Static Testing (Realization Activity)

has assigned one or more Dynamic/Static Testing Methods.

Next, we first illustrate aspects of the verification of the TestTDO coverage, which

embraces specified axioms as well. Then, we describe some validation and evaluation

issues.

5 Verifying, Validating and Evaluating TestTDO

In order to cover the established scope in the A1 (DSR) activity, TestTDO should be

able to answer all the CQs. In this direction, in the previous section we made to some

extent descriptions of most of the TestTDO terms, properties and relations. In this sec-

tion, in Table 2, we present an excerpt from the verification matrix with the TestTDO

terms, relationships, properties and axioms that answer the five CQs listed previously,

in Section 4. Note that Souza et al. [19] applied a similar approach for ROoST. The

whole verification matrix can be accessed at http://bit.ly/TestTDO-VerMatrix.

In the cycle of DSR design-construction-evaluation activities, we continuously

checked if the CQs were being answered. Consequently, when we verified that all the

CQs were addressed by the terms, properties, relationships and axioms defined in the

TestTDO artifact, this cycle ended. This verification matrix allowed us to check not

only if the CQs were answered, but also whether there were unnecessary elements for

the TestTDO scope.

On the other hand, in order to validate initially if TestTDO was able to represent

concrete situations of the world, we instantiated its terms, properties and relationships

using a geometrical figure application for an academic project. This proof of concept is

based on the running testing example used by G. J. Myers in [16], and can be accessed

at http://bit.ly/TestTDO-Val. As a result of this validation, we can conclude that

TestTDO is able to represent this rather simple situation. However, we need to imple-

ment TestTDO in industrial projects that deal with more complex real-world situations.

It is worth mentioning that the third co-author of this paper currently works –playing

the tester role- in a company that provides software solutions mainly to abroad custom-

ers. So far, TestTDO has covered all the terminological situations he has had to tackle.

Table 2. Excerpt from the TestTDO's Verification Matrix. Note that CQ stands for Compe-

tency Question. Also note that at the bottom of this table the highlighted Axioms are specified

in first-order logic.

CQ Terms, relationships and properties Axioms

CQ3

Testing Realization is-a Testing Activity

A1, A7,

A11

Testing Realization produces Test Result

Actual Result is-a Test Result

Incident is-a Test Result

CQ14

Testing Design is-a Testing Activity

A10, A12

Testing Design has assigned Testing Design Method

Testing Design Method is-a Testing Method

Specification-based Method is-a Testing Design Method

Structure-based Method is-a Testing Design Method

Experience-based Method is-a Testing Design Method

CQ19

Test Requirement refers to Testable Entity

A6 Test Requirement is based on Test Basis

Test Basis is linked to Functional Requirement

CQ24

Test Requirement is based on Test Basis

A5, A6 Test Basis is linked to Non-Functional Requirement

Test Basis is linked to Functional Requirement

CQ25

Test Project operationalizes Test Goal

A8
Test Project associates Testing Strategy

Testing Strategy helps to achieve Test Goal

Test Goal has the property named purpose

 A1) For any Testing Realization activity that produces a Test Result, this result is

therefore an Actual Result or an Incident, but not both at the same time.

∀ trn, ∃ tr: TestingRealization(trn) ∧ TestResult(tr) ∧ produces(trn, tr) → ActualResult(tr) ⊻
Incident(tr)

A5) Any Testable Entity is an Evaluable Entity iff the Test Requirement that refers to

this Thing is linked to a Non-Functional Requirement.

∀ te: TestableEntity(te) ∧ EvaluableEntity(te) ↔ ∃ tr, tb, nfr: TestRequirement(tr) ∧ TestBa-
sis(tb) ∧ NonFunctionalRequirement(nfr) ∧ refersTo(tr, te) ∧ isBasedOn(tr, tb) ∧ is-

LinkedTo(tb, nfr)

A6) Any Testable Entity is a Developable Entity iff the Test Requirement that refers to

this Thing is linked to a Functional Requirement.

∀ te: TestableEntity(te) ∧ DevelopableEntity(te) ↔ ∃ tr, tb, fr: TestRequirement(tr) ∧ TestBa-
sis(tb) ∧ FunctionalRequirement(fr) ∧ refersTo(tr, te) ∧ isBasedOn(tr, tb) ∧ isLinkedTo(tb, fr)

A8) All Test Project operationalizes a Test Goal and associates a Testing Strategy iff

this Testing Strategy helps to achieve the operationalized Test Goal.

∀ tp, ∃ tg, ts: TestProject(tp) ∧ TestGoal(tg) ∧ TestStrategy(ts) ∧ operationalizes(tp, tg) ∧ asso-
ciates(tp, ts) ↔ helpsToAchieve(ts, tg)

A10) If a Testing Design activity has assigned a Specification-based Method and pro-

duces a Test Specification, then always consumes a Test Basis, which is used by the

Specification-based Method without using the internal structure of the Testable Entity.

∀ td, ∃ spbm, ts: TestingDesign(td) ∧ Specification_basedMethod(spbm) ∧ TestSpecification(ts)
∧ hasAssigned(td, spbm) ∧ produces(td, ts) → ∃ tb, te: TestBasis(tb) ∧ TestableEntity(te) ∧

uses(spbm, tb) ∧ consumes(td, tb) ∧ requiresAsInput(td, te) ∧ ¬uses(spbm, te)

Table 3. Summary of the evaluation results of the 3 best-ranked ontologies of Table 1, and

their comparison with the TestTDO evaluation results. The green color indicates “satisfactory”

acceptability level (�); yellow “marginal” (�) and red “unsatisfactory” (�). Indicators' values

are expressed in [%].

Last but not least, since we have conducted the ontological quality evaluation of the

12 SLR-selected ontologies, we also planned in the DSR A3 activity to evaluate

TestTDO and compare its ontological quality with them. To this end, we have used the

same non-functional requirements tree (i.e., all the same sub-characteristics and attrib-

utes for the Ontological Quality characteristic), but now including the TestTDO out-

comes (see http://bit.ly/OntoQualityEvalwithTestTDO). Table 3 shows a fragment of

this evaluation including only the 3 best-ranked ontologies of Table 1.

For the 1.1 (Ontological Structural Quality) sub-characteristic and its 3 attributes,

TestTDO has met 100% (�) since all the terms and properties are explicitly defined,

and the axioms specified. The reader can see and compare this situation with the other

three ontologies in Table 3.

Regarding the 1.1.4 sub-characteristic, we define it as “Degree to which an ontology

has a balance between the amount of non-taxonomic and taxonomic relationships in

addition to the former are defined”. Note that non-taxonomic relationships are those

which are not ‘kind of’ (is_a) or ‘whole-part’ (part_of). Non-taxonomic relationships

should therefore be defined. We have specified in [21], for the “Balanced Non-Taxo-

nomic Relationships Availability” (1.1.4.1) attribute, its metric that quantifies it, and

its elementary indicator that interprets it. As a result of the 1.1.4 sub-characteristic,

TestTDO met the satisfactory acceptability level (91.43% �).

Looking at the Compliance to other Vocabularies (1.3) sub-characteristic, almost all

ontologies adhere their terminology to one or more international standard glossaries, as

commented in Section 2. TestTDO was built considering official and de facto interna-

tional standards such as ISO 29119 [14] and ISTQB [15], which are widely adopted by

Characteristics / Attributes

Vasant-

hapriyan et

al. [24]

ROoST [19]
Asman et al.

[2]
TestTDO

1. Ontological Quality 51.28� 79.54� 66.71� 98.71�

1.1 Ontological Structural Quality 32.56� 79.08� 61.92� 97.43�

1.1.1 Defined Terms Availability 15.60� 82.20� 100� 100�

1.1.2 Defined Properties Availability 0� 0� 0� 100�

1.1.3 Specified Axioms Availability 50� 100� 0� 100�

1.1.4 Balanced Relations Availability 54.40� 87.32� 73.07� 91.43�

1.1.4.1 Balanced Non-Taxonomic Re-

lationships Availability
68� 95.65� 66.34� 89.29�

1.1.4.2 Defined Non-Taxonomic Rela-

tionships Availability
0� 54� 100� 100�

1.2 Domain-specific Terminological

Coverage Quality
100� 50� 100� 100�

… … … … …

1.3 Compliance to other Vocabularies 50� 100� 52.50� 100�

1.3.1 Terminological Compliance to In-

ternational Standard Glossaries
100� 100� 85� 100�

1.3.2 Terminological Compliance to

other Domain/Core Ontologies
0� 100� 100� 100�

1.3.3 Terminological Compliance to

Foundational Ontologies
0� 100� 0� 100�

professional testers. On the other hand, ROoST is the unique domain software testing

ontology that was built on a foundational ontology. We have considered this attribute

of ROoST as a strength to be adopted. Therefore, TestTDO was conceived at the top-

domain level considering also our foundational and core ontologies in the framework

of the four-layered (FCD-OntoArch) architecture depicted in Fig. 1.

6 Concluding Remarks and Future Work

As indicated in the Introduction Section, after analyzing both the results of the con-

ducted SLR of primary studies on software testing ontologies and the state-of-the-art

of test-related standards, we decided to develop a new top-domain software testing on-

tology that fits our aim and scope. We have confirmed that there was heterogeneity,

ambiguity, and incompleteness for concepts dealing with test goals and requirements

as well as with testing work products, activities and methods in the selected 12 ontolo-

gies. Furthermore, there was no software testing ontology directly linked with NFRs

and FRs ontological concepts.

TestTDO was created for terminologically nourishing specifications of methods and

processes to a family of testing strategies to be developed from now on. TestTDO is a

top-domain level ontology in the framework of the four-layered architecture, which was

designed to be extended by lower-level software testing domain ontologies.

Therefore, in the present work, we have discussed aspects of the TestTDO develop-

ment, verification, validation and evaluation for its conceptualization. Depending on

the research aim, a conceptualized ontology may also be implemented in a formal se-

mantic language such as OWL. Obviously that an implemented ontology further allows

it can be verified automatically by using a query language for OWL such as SQWRL

for instance. Hence, CQs can be implemented in SQWRL for verification. We envision

to implement TestTDO even this was not our primary aim.

Acknowledgments. This work and line of research are supported by the Science

and Technology Agency of Argentina, in the PICT 2014-1224 project at UNLPam.

References

1. Arnicans G., Romans D., Straujums U.: Semi-automatic Generation of a Software Testing

Lightweight Ontology from a Glossary Based on the ONTO6 Methodology, Frontiers in Ar-

tificial Intelligence and Applications, V.249, pp. 263-276 (2013)

2. Asman A., Srikanth R. M.: A Top Domain Ontology for Software Testing, Master Thesis,

Jönköping University, Sweden, pp. 1-74 (2016)

3. Bai X., Lee S., Tsai W. T., Chen Y.: Ontology-Based Test Modeling and Partition Testing of

Web Services, IEEE Int'l Conference on Web Services (ICWS'08), pp. 465-472 (2008)

4. Barbosa E. F., Nakagawa E. Y., Riekstin A. C., Maldonado J. C.: Ontology-based Develop-

ment of Testing Related Tools, 20th International Conference on Software Engineering and

Knowledge Engineering (SEKE'08), pp. 697-702 (2008)

5. Becker P., Papa F., Olsina L.: Process Ontology Specification for Enhancing the Process

Compliance of a Measurement and Evaluation Strategy, CLEI eJnal., 18:(1), pp. 1-26 (2015)

6. Becker P., Tebes G., Peppino D., Olsina L.: Applying an Improving Strategy that embeds

Functional and Non-Functional Requirements Concepts. Journal of Computer Science &

Technology, 19:(2), pp. 153-174 (2019)

7. Cai L., Tong W., Liu Z., Zhang J.: Test Case Reuse Based on Ontology, 15th IEEE Pacific

Rim International Symposium on Dependable Computing, pp. 103-108 (2009)

8. Campos H., Acácio C., Braga R., Araújo M. A. P., David J. M. N., Campos F.: Regression

Tests Provenance Data in the Continuous Software Engineering Context, In 2nd Brazilian

Symp. on Systematic and Automated Software Testing (SAST), Paper 10, pp. 1-6 (2017)

9. D’Aquin M., Gangemi A.: Is there beauty in ontologies? Applied Ontology, 6:(3), pp. 165-

175 (2011)

10. Fleetwood S.: The ontology of things, properties and powers. Journal of Critical Realism,

8:(3), pp. 343-366, Available at http://eprints.uwe.ac.uk/15967 (2009)

11. Freitas A., Vieira R.: An Ontology for Guiding Performance Testing, IEEE/WIC/ACM Inter-

national Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies

(IAT), (WI-IAT'14), V.1, pp. 400-407 (2014)

12. Hevner A. R, March S. T., Park J., Ram S.: Design Science in Information Systems Research.

Management Information Systems Quarterly, 28:(1), pp. 75-105 (2004)

13. IEEE: Computer Society, SWEBOK. A Guide to the Software Engineering Body of

Knowledge. Available at https://www.computer.org/education/bodies-of-knowledge/soft-

ware-engineering, (2004)

14. ISO/IEC/IEEE 29119-1: Software and systems engineering - Software Testing – Part 1: Con-

cepts and Definitons (2013)

15. ISTQB. International Software Testing Qualifications Board, Standard Glossary of Terms

used in Software Testing, Version 3.2. Available at https://www.istqb.org/, (2019)

16. Myers G.J., Sandler C., Badgett T.: The Art of Software Testing (3rd ed.). Wiley Publishing,

ISBN 978-1118031964 (2011)

17. Olsina L., Becker P.: Family of Strategies for different Evaluation Purposes, XX CIbSE'17,

CABA, Argentina, Published by Curran Associates, pp. 221-234 (2017)

18. Sapna P. G., Mohanty H.: An Ontology Based Approach for Test Scenario Management, 5th

International Conference on Information Intelligence, Systems, Technology and Management

(ICISTM'2011), V.141, pp. 91-100 (2011)

19. Souza E. F., Falbo R. A., Vijaykumar N. L.: ROoST: Reference Ontology on Software Test-

ing, Applied Ontology Journal, 12:(1), pp. 1-30 (2017)

20. Tebes, G., Peppino, D., Becker, P., Matturro, G., Solari, M., Olsina, L.: A Systematic Review

on Software Testing Ontologies, 12th International Conference on the Quality of Information

and Communications Technology, Springer book, CCIS V.1010, M. Piattini et al. (Eds.):

QUATIC 2019, Ciudad Real, Spain, pp. 144-160 (2019)

21. Tebes, G., Peppino, D., Becker, P., Matturro, G., Solari, M., Olsina, L.: Analyzing and Doc-

umenting the Systematic Review Results of Software Testing Ontologies. Under review in an

International Journal, pp. 1-34 (2020)

22. Tebes, G., Peppino, D., Rivera M.B., Becker, P., Papa, M.F., Olsina L.: Especificación del

Proceso de Design Science Research: Caso Aplicado a una Ontología de Testing de Soft-

ware. 7mo CoNaIISI’19, La Matanza, Argentina, Nov.14-15, pp. 1-10 (2019)

23. UML Testing Profile (U2TP), V2.0, Available at https://www.omg.org/spec/UTP2/2.0/PDF

24. Vasanthapriyan S., Tian J., Xiang J.: An Ontology-Based Knowledge Framework for Soft-

ware Testing, In Comm. in Computer and Information Science, V.780, pp. 212-226 (2017)

25. Vasanthapriyan S., Tian J., Zhao D., Xiong S., Xiang J.: An Ontology-Based Knowledge

Sharing Portal for Software Testing, In IEEE International Conference on Software Quality,

Reliability and Security Companion (QRS-C'17), pp. 472-479 (2017)

26. Zhu H., Huo Q.: Developing A Software Testing Ontology in UML for a Software Growth

Environment of Web-Based Applications, In Software Evolution with UML and XML, IDEA

Group, pp. 263-295 (2005)

