
Revisiting the Bad Smell and Refactoring
Relationship: A Systematic Literature Review

Cleiton Silva1, Amanda Santana1, Eduardo Figueiredo1, Mariza A. S. Bigonha1

Department of Computer Science, Federal University of Minas Gerais,
Belo Horizonte, Brazil

{cleiton.silva, amandads, figueiredo, mariza}@dcc.ufmg.br

Abstract. Bad smells are indicators of code structure problems that
may be solved via refactoring. Refactoring is a process of improving the
internal structure of the source code without changing the external be-
havior of the software system. However, the refactoring process takes
effort and, so, it should be done in a disciplined manner in order to
minimize the chances of introducing code errors. The goal of this paper
is to present a systematic literature review with the purpose of identi-
fying the explicit relationship between refactorings and the bad smells
proposed by Fowler. This relationship is defined as the environment in
which a bad smell is mentioned and a possible refactoring strategy that
may be used to solve it. As a result, we have identified 20 papers that
show the direct relationship between 31 different refactorings and 16 bad
smells. Among the contributions of our SLR, we highlight the refactoring
strategies that may be performed to eliminate bad smells; the relation-
ship between bad smells and refactoring discussed in the literature up to
now; and a contrast found between the literature and Fowler’s catalog.

Keywords: Bad Smell · Code Smell · Refactoring · Literature Review

1 Introduction

Software systems must evolve to cope with new requirements from stakeholders.
Hence, it requires a great effort for developers to understand and make the
necessary modifications in the source code. This effort is greatly affected by
aspects of the quality of the source code, such as comprehensibility, complexity,
and maintainability. Bad Smells are indicators that there are code structure
problems, which may be solved via refactoring [19]. Refactoring is a process of
enhancing the internal structure of the source code without changing the external
behavior of the software system [18].

Fowler [18] presents a catalog of bad smells and refactoring consisting of 22
bad smells and 72 refactorings, which is widely discussed in the literature [29, 33,
44]. However, in many cases, the descriptions of bad smells and their relationships
with refactorings are not precise and lack a consistent level of details [4]. So, we
need more studies in the area, not only in context-based evaluations of bad smells
and on how to eliminate them [45], but also in research exploring the relationship
between refactoring and bad smell [9].



2 C. Silva et al.

Studies that perform analysis based on the refactoring process argue that
refactoring is effective in removing bad smells in less than 10% of the time [5,
10, 11]. So, refactoring should be done in a disciplined manner to minimize the
chances of introducing (i) another bad smell [10, 11, 30, 48]; (ii) other defects
[6, 32, 40]; and (iii) ensure that the quality was enhanced [5, 18]. Xia et al. [53]
have conducted an empirical study by surveying with developers, and they have
identified the widely use of refactoring. However, participants reported that this
activity is often neglected in academia, which focuses on the ability to write
code from scratch. Therefore, they suggest that educators should emphasize
refactoring in classes in order to identify and eliminating bad smells.

Refactor is a tricky activity since developers have to analyze the source code
to (i) identify what will be refactored, (ii) the operation that will solve it, and (iii)
where the refactored code will be allocated. These steps are difficult to be taught
since they depend on the system context, although they may be addressed using
automatic refactoring tools. Some developers do not use these tools because they
do not know when and how to refactor [26]. In fact, some studies reveal that
many developers prefer to refactor code manually, because they do not fully trust
the tool behavior [23]. They also perform refactoring manually because existing
refactoring tools may introduce new bad smells after the refactoring process [50].

To address the problems mentioned, this paper presents a systematic litera-
ture review (SLR) whose objective aims at finding direct relationship between
the bad smell and the refactoring proposed in the Fowler’s catalog [18]. We have
identified 20 papers that show the explicit relationship between 31 different refac-
toring and 16 bad smells. Analyzing these papers, we have found that (1) the
relationship between Move Method applied to Feature Envy appears as the most
discussed one in these studies; (2) there are different refactoring strategies than
those proposed by Fowler to address some bad smells. We also have found seven
tools that refactor through the identification of the bad smells of Fowler. These
results provide insights to researchers and developers of the existing relationships
that may be used to refactor code. We also identify relationships that should be
more investigated [52].

The main contributions of this SLR are four-fold. First, it shows what refac-
toring strategies may be performed to eliminate bad smells. Second, it reports
the relationship between bad smells and refactoring discussed in the literature
up to now. Third, it provides a contrast between the literature and Fowler’s cat-
alog. Finally, it help us to identify tools that refactor through the identification
of Fowler’s bad smells.

The remainder of this paper is organized as follows. Section 2 describes the
SLR protocol we have followed. Section 3 presents the results of the conducted
SLR. Section 4 discusses threats to validity. Section 5 discusses related work.
Section 6 concludes this study and points directions for future work.



Revisiting the Bad Smell and Refactoring Relationship 3

2 Systematic Literature Review

A Systematic Literature Review is a study that provides identification, analysis,
and interpretation of evidence related to a particular research topic [52]. This
work is conducted using the Kitchenham guidelines [24]. It has three stages: (i)
planning, (ii) execution, and (iii) analysis [24]. The focus of this SLR is on the
explicit relationship between refactoring and bad smells. Section 2.1 presents
the planning phase. Section 2.2 describes the execution and the steps for the
selection of primary studies. The analysis stage is presented in Section 3.

2.1 Planning

In this phase, we define: (i) the topic to be investigated; (ii) the electronic
databases used to search for papers; (iii) the search string to identify relevant
studies; (iv) the inclusion and exclusion criteria to obtain primary studies; and
(v) timestamp in which this work has been conducted.

Research questions. To identify the relationships between refactoring and
the bad smells of Fowler [18], we have defined two general Research Questions
RQ1 and RQ2, and two specific ones RQ1.1 and RQ1.2. These RQs allow us
reaching our goals, and drive all activities we have conducted within this SLR.

RQ1 Which relationships between refactoring and bad smells are explicitly
discussed in the literature?

RQ1.1 Which are the most mentioned relationships between bad smells and
refactoring found in the literature?

RQ1.2 Do relationships we found differ from those that Fowler presents?

RQ2 Which tools perform refactoring from bad smell detection?

Electronic databases. There are different eletronic databases to be used in
literature reviews to search for primary studies. Some studies use one database
[54, 55]; others use three databases [21], six databases [3, 15, 33], seven databases
[1], or even eight databases [8, 29, 49]. We use seven of the most used ones [33],
as exhibits Table 1. The first column in Table 1 shows the database name, while
the second one presents their respective websites.

Search string. It identifies the relevant studies in the selected databases, allow-
ing us to answer the proposed research questions. We conducted a pilot study
with search strings composed of multiple different terms and applied them in
each database. We evaluated their results in each database with the purpose to
identify which of the search string have reached as many studies as possible in
the literature. At the end, the search string was consolidated with three terms
as follows.

(refactor OR refactoring) AND (relationship OR correlation OR

associate) AND ("code smell" OR "bad smell" OR bug OR "anti pattern")



4 C. Silva et al.

Table 1. Eletronic Databases

Database Address Papers Returned

ACM Digital Library http://dl.acm.org/ 113
Engineering Village https://www.engineeringvillage.com 83
IEEE Xplore http://ieeexplore.ieee.org/ 47
Science Direct http://www.sciencedirect.com/ 07
Scopus http://scopus.com/ 70
Springer http://link.springer.com/ 2,025
Web of Science http://apps.webofknowledge.com/ 44

Total 2,389

Inclusion and exclusion criteria. We have four inclusion and two exclusion
criteria to select the primary studies (see Table 2). These criteria allow classifying
each study under review as a candidate to be included or excluded from the SLR.

Table 2. Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

Written in English < 5 pages

Published in conferences, journals, work-
shops and book chapters*

Thesis, dissertations, tutorials, courses
and magazines issues

Available in electronic format

Present Fowler’s refactoring and bad
smells

*Papers published at conferences that appear as book chapters in digital libraries

Search source. We searched all studies published up to 2018. The search pro-
cess was carried out from February 6 to 9, 2019.

2.2 Execution

This phase consists of: (i) applying the search string in the selected databases,
identifying primary studies, and (ii) selecting the relevant ones found through the
exclusion/inclusion criteria. Figure 1 presents the resulting number of primary
studies after each step, serving as input to the next step. The check symbols
indicate the studies that remained in the step, while numbers near cross sym-
bols indicate the studies excluded in the step. At the end of the process, we
identified 20 papers that fit the scope of this work. These studies were analyzed
and summarized in order to collect information to answer our RQs.

Search process. Table 1 presents the primary studies returned by the search
in each database, with the total of 2,389 studies, including duplicates.



Revisiting the Bad Smell and Refactoring Relationship 5

Fig. 1. Number of papers filtered in each step

Study selection process. Figure 1 presents the six steps focusing on selecting
relevant papers according to its content. The result regarding each individual
database is available on our website [41]. The six steps are discussed as follows.

Step 1- Remove Duplicates. We merge the papers returned in all databases,
which cause the removal of duplicated papers. These papers were randomly elim-
inated, without favoring any database.

Step 2- Reading Title. Only those papers with excerpts of the search string
used or those that could be relevant for the study are retained. In case of doubts,
the papers were kept for the next filtering step.

Step 3- Reading Abstract. Here, we select those papers that show some
evidence of being linked to the SLR context.

Step 4- Inclusion and Exclusion Criteria. After the application of the inclu-
sion and exclusion criteria defined in Section 2.1, if the paper fits in at least one
of the exclusion criteria, it is removed from our SLR.

Step 5- Reading Introduction and Conclusion. We select those papers that
present evidence that they help to answer our RQs, and those that we deem
relevant to the study.

Step 6- Complete Reading of Paper. Only those papers that are directly
related to our RQs are included.

Snowballing- In our SLR, we execute the backward snowballing [51]. The
process was performed with the 15 papers identified at the end of Step 6. These
six steps were applied again, in order to find new candidates to be included. The
snowballing has resulted in the inclusion of 5 new papers.

Data extraction. Research questions are the main drivers of what information
needs to be extracted. So, the main topic of each RQ was identified and sum-
marized in a table. For each paper found, it was documented: (i) each bad smell
mentioned in the study and the refactoring operations that solve it; and (ii) each
tool mentioned in the paper and their characteristics. These information allow
us not only to identify the relationship that is most studied, but also to com-
pare the Fowler suggestions against the suggestions proposed by the literature.



6 C. Silva et al.

It also provides insights of which tools are used to study both bad smells and
refactoring.

The quality assessment is an integral part of an SLR to assess the strength
of the evidence, and to take it into account when synthesizing the results [2].
However, we did not perform it in this SLR. The reason is because we consider
that the Study Selection Process and Data Extraction are sufficient in reaching
most relevant papers to our study.

Results summarization. We found 20 studies explicitly addressing the rela-
tionship between refactoring and the bad smells proposed by Fowler [18]. It is
worth noting that all selected papers were published between 2004 and 2018.
This shows that the topic is still being discussed in the literature.

3 Results

This section aims to answer RQ1 and RQ2 presented in Section 2.1. Section 3.1
describes the characterization of the papers found. Sections 3.2 and 3.3 presents
the analysis of the collected data to answer RQ1 and RQ2, respectively.

3.1 Overview of Primary Studies

Figure 2 shows the number of studies found per year. Observe that 2017 shows
the largest number of relevant studies. The years from 2013 to 2015 show three
papers each. No study discussing the explicit relationship between refactoring
and bad smells was found in 2005, 2007, 2008, and 2010 to 2012. From the figure,
we may argue that the topic has been recently researched.

Fig. 2. Publication Year

Selected studies were mainly published in journals and conferences, with a
total of 9 and 8 studies, respectively. They were published in 17 different events,
most of them in the IEEE Transactions on Software Engineering and in the



Revisiting the Bad Smell and Refactoring Relationship 7

International Conference on Agile Software Development (XP), with 3 and 2
papers, respectively. The remaining events presented one study each and may
be found in our website [41].

3.2 Relationships between Bad Smells and Refactoring

RQ1 Which relationships between refactoring and bad smells are explicitly
discussed in the literature?

Table 3 presents the relationships between refactoring and bad smells ac-
cording to the analysis of the 20 papers found. Each line presents a different
relationship between a bad smell and refactoring. The first column presents the
bad smell, the second column shows which refactoring solves it. Columns 3 and
4 check whether the relationship is discussed by Fowler or by the literature, re-
spectively. A bullet indicates that refactoring was discussed. It is worth noticing
that a relationship may be discussed by Fowler and by the literature. The last
column presents reference of the studies that discuss these relationships.

We focused on Fowler’s bad smells and refactoring. But, for specific situa-
tions, we have merged different terminologies into a single bad smell, since their
meaning and characteristics are similar, only changing their names. For instance,
we classified Clone [27] or Code Clone [22, 28] as Duplicated Code. Parallel In-
heritance [36, 40] is classified as Parallel Inheritance Hierarchies. There is a case
where the authors explicitly indicated State Checking as the Switch Statements
smell [12]. For the refactoring classification, we have the case where Polymor-
phism [12] is named for Replace Conditional with Polymorphism.

Every paper we have identified discuss more than one relationship between
bad smells and refactoring. So, each relationship found is individually docu-
mented. Observe that there are cases where different refactoring may be applied
to address the same bad smell. Therefore, to answer RQ1, Table 3 presents the
22 bad smells proposed by Fowler, where 16 of them (73%) are studied in the
literature. This indicates concern on the part of researchers to address, as much
as possible, most bad smells present in the catalog. However, the situation for
refactoring is different. From a total of 72 refactoring in the catalog, only 31
(43%) of them are cited in the literature. This indicates the need to evaluate
other refactoring strategies. Still, this may be an indicative that not all refactor-
ing operations mentioned by Fowler are used in practice to remove bad smells.

RQ1.1 Which are the most mentioned relationships between bad smells and
refactoring found in the literature?

Table 3 shows all relationships between refactoring and bad smells found in
this SLR. To answer this RQ, we consider the relationship being discussed by
the largest number of different studies. We identified that the highest number of
citations is related to Move Method (refactoring) and Feature Envy (bad smell),
totaling 14 different papers targeting this relationship.

According to the data presented in Table 3, the refactoring operation that
solves the largest amount of bad smells is Move Method, being used to solve 11



8 C. Silva et al.

Table 3. Relationships Between Bad Smell and Refactoring

Bad Smell Refactoring Fowler Literature References

Alternative Classes with
Different Interfaces

Extract Superclass • • [13]
Move Method • • [13]
Rename Method • • [13]

Comments
Extract Method •
Introduce Assertion •
Rename Method •

Data Class

Encapsulate Collection • • [40, 42]
Encapsulate Field • • [13, 40, 42]
Extract Method • • [40, 42]
Hide Method • • [13, 40, 42]
Move Method • • [13, 40, 42]
Remove Setting Method • • [40]

Data Clumps
Extract Class •
Introduce Parameter Object •
Preserve Whole Object •

Divergent Change

Extract Class • • [11, 36]
Extract Method • [10]
Extract Superclass • [11]
Move Field • [11]
Move Method • [11]
Pull Up Method • [11]

Duplicated Code

Extract Method • • [16, 22, 27, 28]
Form Template Method • [16]
Pull Up Method • • [13, 16, 22]
Replace Method with Method Object • [16]
Substitute Algorithm •

Feature Envy

Consolidate Duplicate Conditional Frag. • [5]
Extract Method • • [5, 10, 40, 42, 47]
Move Field • [12, 42, 47]
Move Method • • [5–7, 12, 13, 25, 28, 36–40, 42, 47]
Pull Up Method • [42]

Inappropriate Intimacy

Change Bidirectional Assoc. to Unidir. •
Extract Class •
Hide Method •
Move Field • • [13]
Move Method • • [13]

Incomplete Library Class
Introduce Foreign Method •
Introduce Local Extension •
Move Method • • [13]

Large Class
Duplicate Observed Data •
Extract Class •
Extract Subclass • • [13]

Lazy Class

Collapse Hierarchy •
Inline Class • • [5]
Move Method • [37]
Push Down Method • [10]

Long Method

Add Parameter • [5]
Consolidate Conditional Expression • [5, 42]
Decompose Conditional • • [42]
Extract Method • • [5, 11, 12, 20, 27, 42]
Inline Method • [5]
Introduce Explaining Variable • [5]
Introduce Parameter Object • • [42]
Preserve Whole Object • • [42]
Remove Control Flag • [5]
Remove Parameter • [5]
Rename Method • [5]
Replace Method With Method Object • • [42]
Replace Temp With Query • • [42]

Long Parameter List Replace Parameter with Explicit Methods •

Message Chains
Extract Method •
Hide Delegate •
Move Method • • [13]

Middle Man
Inline Method •
Remove Middle Man •
Replace Delegation with Inheritance •

Parallel Inheritance
Hierarchies

Extract Subclass • [36]
Move Field • • [13]
Move Method • • [13, 40]

Primitive Obsession

Extract Class •
Introduce Parameter Object •
Replace Data Value with Object •
Replace Type Code with Class •
Replace Type Code with Subclass •
Replace Type Code with State/Strategy •
Replace Array with Object •

Refused Bequest
Push Down Field • • [5, 13]
Push Down Method • • [5, 10, 13]
Replace Inheritance with Delegation • • [5]

Shotgun Surgery

Move Class •
Move Field • [11, 13, 36]
Move Method • • [11, 13, 36]
Pull Up Method • [11]

Speculative Generality

Collapse Hierarchy • • [5]
Inline Class •
Remove Parameter • • [13]
Rename Method • [13]

Switch Statement

Extract Method •
Move Method • • [13]
Replace Conditional with Polymorphism • [12]
Replace Type Code with State/Strategy •
Replace Type Code with Subclass •

Temporary Field
Extract Class •
Introduce Null Object •



Revisiting the Bad Smell and Refactoring Relationship 9

types of smells. The bad smell that may be solved with the highest number of
operations is the Long Method, in which 13 refactoring may solve it.

RQ1.2 Do relationships we found differ from those that Fowler presents?

To answer this question, we performed the analysis based on columns 3 and 4
of Table 3. We identified three cases: Case 1: if Column 3 is marked and Column
4 is not, this means that this relationship is discussed only by Fowler, meaning
that the relationship needs to be researched, or may be not used in practice.
Case 2: if the opposite situation occurs, where Column 4 is marked and Column
3 is not, it means that we found a new relationship that is not addressed in
Fowler’s catalog. Case 3: if columns 3 and 4 are marked, this represents that the
relationship found by Fowler agrees with what the literature says.

For example, we identified for Lazy Class all refactoring operations that solve
it. We found a refactoring that only Fowler presents a solution: Collapse Hier-
archy (Case 1). We also found that the literature proposes two new refactoring
operations to solve it: Move Method and Push Down Method (Case 2). Finally,
we identify that Inline Class was found in Fowler’s work and in the literature
(Case 3).

From Table 3 and by the reasoning explained above, we may conclude that
only Alternative Classes with Different Interfaces, Data Class, and Refused Be-
quest have both columns 3 and 4 being a perfect match. This indicates that
there is no new refactoring strategy to solve them reported in the literature.
Also, six bad smells in the catalog were not addressed by the literature. This
may be due to the nature of them, since some bad smells do not impact signif-
icantly on the source quality [35]. Observe that for seven of the 22 smells, the
literature has proposed more refactoring operations than Fowler. However, for
these smells, Fowler has presented 18 refactorings strategies to solve them, of
which only three of them were not confirmed by the literature. We identified 35
relationships in Case 1, 24 in Case 2, and 35 in Case 3.

3.3 Tools from Refactoring

RQ2 Which tools perform refactoring from bad smell detection?

It is worth noticing that not all tools that were proposed or mentioned in
the literature answer the RQ2. The focus of this SLR is to identify studies that
explicitly cite the relationship between refactoring and bad smells, and not to
identify all refactoring tools. So, we documented only tools that appear in the
resulting studies, which detect bad smells, and propose refactoring to solve them.
Out of 20 studies, 16 have mentioned the tools used to conduct them. This list
may be found on our website [41]. We observe that nine tools need more than one
tool to perform the process of detecting bad smells and applying the refactoring.
As the focus of our study is to tackle the refactoring and bad smell context
together, we only report seven tools that target both concepts. Table 4 presents
these tools and information about each tool, such as if it has an Graphical User
Interface, or if it is commercial.



10 C. Silva et al.

Table 4. Characteristics each tool supports

Tool [Ref.] GUI FRA ONL PLG FRE OPS USG SL

Extract Method Detector [27] Yes - No Yes Yes Yes No Java
JDeodorant [6, 12, 40] Yes - No Yes Yes Yes Yes Java
JMove [39] Yes - - Yes Yes Yes Yes -
Liu’s Approach [25] - - - - - - - -
Methodbook [7] - - - - - - - Java
MMRUC3 [38] - Yes - - - - - Java
Tsantalis’s Methodology [47] - - - - - - - Java
GUI: graphical user interface; FRA: framework; ONL: online; PLG: plugin; FRE: free for use; OPS: open-source;
USG: user guide available; SL: supported language; “-”: information not available.

4 Threats to Validity

We discuss the threats to validity listed by Wohlin et al. [52]: construct, internal,
conclusion, and external.

Construct Validity: the electronic database selected might not retrieve all
relevant papers. To minimize this threat, we selected seven different databases
that aggregate papers from many publishers. Also, the search string used may
not find all papers that are relevant to this SLR. To minimize this threat, we
designed a search string that includes common terms for “refactoring” and “bad
smell”. Furthermore, we performed a pilot search in each database to select a
subset of the most common terms used in the research field, in order to retrieve
the highest number of relevant papers. However, we may not assume that all
existing related works were found by this filtering strategy.

Internal Validity: the guaranteed reproducibility of this study is due to the
detailed specification of the search engines used, the search string, and the in-
clusion and exclusion criteria. Possible limitations of the search results were
overcome by including different terms used by different authors, but that had
similar concepts, staying in this SLR scope. Another threat may be related to
the judgment of the information presented, which expresses only the authors
point of view. To minimize this threat, the authors have carried out the selec-
tion stage, which in the initial stages made comparisons of the selected papers
to avoid biasing in the selection of studies. Besides that, frequent meetings were
held between all authors to discuss the relevant papers.

Conclusion Validity: the summarization of the data found in the literature
and in the Fowler’s catalog present the authors point of view, and may not
present the actual concept conveyed by the papers. To minimize this threat,
and to maintain the integrity of the information, we documented only what was
explicitly presented by the papers.

External Validity: this threat is related to the representativeness of the se-
lected papers published up to 2018 regarding the main goals of the systematic



Revisiting the Bad Smell and Refactoring Relationship 11

literature review. The systematic protocol was used to support a comprehen-
sive representation of the selected papers, but some other papers may have been
published after 2018 or indexed after the application of the search string in the
databases. However, our findings about the relationship between refactoring and
bad smells in the study period are accurate to the best of our knowledge.

5 Related Work

There are several reviews of the literature in the context of bad smells [15, 31,
34, 54] and refactoring [1, 29, 46]. However, most studies deal with these subjects
individually, focusing just on one theme. Others deal with more than one theme,
for instance, Sousa et al. [44] and Singh & Kaur [43].

Different from our work that focuses on the context of bad smells and refac-
toring, Sousa et al. [44] present a systematic literature mapping of studies that
investigate the relationship between design patterns and bad smells. The au-
thors focus on co-occurrence between design patterns and bad smells, providing
a general analysis of the relationship between the GOF design patterns [14] and
bad smells described by Fowler[18].

Singh & Kaur [43] perform a SLR of refactoring concerning code smells.
Several data sets and tools for performing refactoring have been revealed and
categorized depending on the detection approach: traditional method, visual-
ization based technique, automatic method, semi-automatic method, empirical
studies, and metric-based method. However, unlike this work, our studies treat
these subjects together, arguing the explicit relationship between refactoring and
bad smells discussed in the literature.

6 Conclusion

Refactoring from bad smell detection is not deeply discussed in the literature.
This work presents the result of an SLR to identify the explicit relationship
between refactoring and bad smells. We found 20 different papers that show the
direct relationship between 31 refactoring types and 16 bad smells proposed by
Fowler. We also found seven tools that apply refactoring after detecting bad
smells.

We identified that the most discussed relationship in the literature is between
Move Method and Feature Envy. It has also been found that: i) there are different
refactoring strategies than those discussed by Fowler to address bad smells, ii)
most strategies defined in the Fowler’s book were addressed in the literature,
and iii) most refactoring tools found may not detect bad smells.

As future work, we suggest an investigation on the feasibility of the refac-
toring strategies found in this SLR for the solution of bad smells proposed by
Fowler, validating them and composing a more extensive and up-to-date catalog.
Also, bad smells and refactorings strategies that were not proposed by Fowler
and the new Fowler’s catalog [17] should be investigated in comparison with the
SLR findings. We also suggest an extension of RQ2, where research should be



12 C. Silva et al.

conducted focusing on identifying all refactoring tools present in the literature,
that apply refactoring after detecting bad smells.

Acknowledgement

This research was partially supported by Brazilian funding agencies: CNPq
(Grant 424340/2016-0), CAPES, and FAPEMIG (Grant PPM-00651-17)

References

1. Al Dallal, J.: Identifying refactoring opportunities in object-oriented code: A sys-
tematic literature review. IST 58, 231–249 (2015)

2. bin Ali, N., Usman, M.: A critical appraisal tool for systematic literature reviews
in software engineering. IST 112, 48–50 (2019)

3. Azeem, M.I., Palomba, F., Shi, L., Wang, Q.: Machine learning techniques for
code smell detection: A systematic literature review and meta-analysis. IST 108,
115–138 (2019)

4. Basit, W., Lodhi, F., Bhatti, U.: Extending refactoring guidelines to perform client
and test code adaptation. In: Int. Conf. on Agile Soft. Development. pp. 1–13 (2010)

5. Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., Palomba, F.: An experimental
investigation on the innate relationship between quality and refactoring. JSS 107,
1–14 (2015)

6. Bavota, G., De Lucia, A., Marcus, A., Oliveto, R.: Recommending refactoring
operations in large software systems. In: RSSE, pp. 387–419 (2014)

7. Bavota, G., Oliveto, R., Gethers, M., Poshyvanyk, D., De Lucia, A.: Methodbook:
Recommending move method refactorings via relational topic models. TSE 40(7),
671–694 (2013)

8. Beecham, S., Baddoo, N., Hall, T., Robinson, H., Sharp, H.: Motivation in software
engineering: A systematic literature review. IST 50(9-10), 860–878 (2008)

9. Boshnakoska, D., Mǐsev, A.: Correlation between object-oriented metrics and refac-
toring. In: Int. Conf. on ICT Innovations. pp. 226–235 (2010)

10. Cedrim, D., Garcia, A., Mongiovi, M., Gheyi, R., Sousa, L., de Mello, R., Fonseca,
B., Ribeiro, M., Chávez, A.: Understanding the impact of refactoring on smells: A
longitudinal study of 23 software projects. In: Proc. of the 11th JointMeeting on
Foundations of Soft. Engineering. pp. 465–475 (2017)

11. Cedrim, D., Sousa, L., Garcia, A., Gheyi, R.: Does refactoring improve software
structural quality? a longitudinal study of 25 projects. In: Proc. of the 30th SBSE.
pp. 73–82 (2016)

12. Chatzigeorgiou, A., Manakos, A.: Investigating the evolution of code smells in
object-oriented systems. Innovations in Syst. and Soft. Engineering 10(1), 3–18
(2014)

13. Counsell, S., Hassoun, Y., Loizou, G., Najjar, R.: Common refactorings, a depen-
dency graph and some code smells: an empirical study of java oss. In: Proc. of the
ISESE. pp. 288–296 (2006)

14. Erich Gamma, Richard Helm, R.J., Vlissides, J.: Design patterns: Elements of
reusable object-oriented software. Addison Wesley Longman Publishing (1994)

15. Fernandes, E., Oliveira, J., Vale, G., Paiva, T., Figueiredo, E.: A review-based
comparative study of bad smell detection tools. In: Proc. of the 20th EASE. pp.
1–12 (2016)



Revisiting the Bad Smell and Refactoring Relationship 13

16. Fontana, F.A., Zanoni, M., Zanoni, F.: A duplicated code refactoring advisor. In:
Int. Conf. on Agile Soft. Development. pp. 3–14 (2015)

17. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional (2018)

18. Fowler, M., Beck, K., Brant, J., Opdyke, W.: Refactoring: Improving the Design
of Existing Code. Addison-Wesley (1999)

19. Gupta, V., Kapur, P.K., Kumar, D.: Modelling and measuring code smells in en-
terprise applications using tism and two-way assessment. Int. Journal of Syst. As-
surance Eng. and Management 7(3), 332–340 (2016)

20. Haas, R., Hummel, B.: Learning to rank extract method refactoring suggestions
for long methods. In: Int. Conf. on Soft. Quality. pp. 45–56 (2017)

21. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature
review on fault prediction performance in software engineering. TSE 38(6), 1276–
1304 (2011)

22. Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K.: Refactoring support based on code
clone analysis. In: Int. Conf. on Product Focused Soft. Proc. Improvement. pp.
220–233 (2004)

23. Kim, M., Zimmermann, T., Nagappan, N.: An empirical study of refactoring chal-
lenges and benefits at microsoft. TSE 40(7), 633–649 (July 2014)

24. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature re-
views in software engineering. In Technical Report, Ver. 2.3 (EBSE) (2007)

25. Liu, H., Wu, Y., Liu, W., Liu, Q., Li, C.: Domino effect: Move more methods once
a method is moved. In: 23rd SANER. vol. 1, pp. 1–12 (2016)

26. Liu, W., Hu, Z.g., Liu, H.t., Yang, L.: Automated pattern-directed refactoring
for complex conditional statements. Journal of Central South University 21(5),
1935–1945 (2014)

27. Liu, W., Liu, H.: Major motivations for extract method refactorings: analysis based
on interviews and change histories. Front. of Com. Science 10(4), 644–656 (2016)

28. Mahmoud, A., Niu, N.: Supporting requirements to code traceability through refac-
toring. RE 19(3), 309–329 (2014)

29. Misbhauddin, M., Alshayeb, M.: Uml model refactoring: a systematic literature
review. ESE 20(1), 206–251 (2015)

30. Mkaouer, M.W., Kessentini, M., Bechikh, S., Cinnéide, M.Ó., Deb, K.: On the use
of many quality attributes for software refactoring: a many-objective search-based
software engineering approach. ESE 21(6), 2503–2545 (2016)

31. Oliveira, J., Viggiato, M., Santos, M.F., Figueiredo, E., Marques-Neto, H.: An
empirical study on the impact of android code smells on resource usage. In: SEKE.
pp. 314–313 (2018)

32. Ouni, A., Kessentini, M., Sahraoui, H., Boukadoum, M.: Maintainability defects
detection and correction: a multi-objective approach. ASE 20(1), 47–79 (2013)

33. d. P. Sobrinho, E.V., De Lucia, A., d. A. Maia, M.: A systematic literature review
on bad smells — 5 w’s: which, when, what, who, where. TSE pp. 1–1 (2018)

34. Paiva, T., Damasceno, A., Figueiredo, E., Sant’Anna, C.: On the evaluation of
code smells and detection tools. JSERD 5(1), 7 (2017)

35. Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De Lucia, A.: On
the diffuseness and the impact on maintainability of code smells: A large scale
empirical investigation. In: Proc. of the 40th ICSE. pp. 482–482 (2018)

36. Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D., De Lucia, A.:
Mining version histories for detecting code smells. TSE 41(5), 462–489 (2014)



14 C. Silva et al.

37. Pietrzak, B., Walter, B.: Leveraging code smell detection with inter-smell relations.
In: Int. Conf. on Extreme Programming and Agile Proc. in Soft. Engineering. pp.
75–84 (2006)

38. Rahman, M.M., Riyadh, R.R., Khaled, S.M., Satter, A., Rahman, M.R.: Mmruc3:
A recommendation approach of move method refactoring using coupling, cohesion,
and contextual similarity to enhance software design. SPE 48(9), 1560–1587 (2018)

39. Sales, V., Terra, R., Miranda, L.F., Valente, M.T.: Recommending move method
refactorings using dependency sets. In: 20th WCRE. pp. 232–241 (2013)

40. Sehgal, R., Mehrotra, D., Bala, M.: Analysis of code smell to quantify the refac-
toring. Int. Journal of Syst. Assurance Eng. and Management 8(2), 1750–1761
(2017)

41. Silva, C., Santana, A., Figueiredo, E., Bigonha, M.A.S.: Revisit-
ing the bad smell and refactoring relationship - data of the study,
https://cleitonsilvat.github.io/eselaw2020/, acessed December 10, 2019

42. da Silva Carvalho, L.P., Novais, R.L., do Nascimento Salvador, L., de Men-
donça Neto, M.G.: An approach for semantically-enriched recommendation of
refactorings based on the incidence of code smells. In: ICEIS. pp. 313–335 (2017)

43. Singh, S., Kaur, S.: A systematic literature review: Refactoring for disclosing code
smells in object oriented software. Ain Shams Engineering Journal (2018)

44. Sousa, B.L., Bigonha, M.A., Ferreira, K.A.: A systematic literature mapping on the
relationship between design patterns and bad smells. In: Proc. of the 33rd Annual
ACM SAC. pp. 1528–1535 (2018)

45. Tahir, A., Yamashita, A., Licorish, S., Dietrich, J., Counsell, S.: Can you tell me
if it smells?: A study on how developers discuss code smells and anti-patterns in
stack overflow. In: Proc. of the 22nd EASE. pp. 68–78 (2018)

46. Tavares, C.S., Ferreira, F., Figueiredo, E.: A systematic mapping of literature on
software refactoring tools. In: Proc. of the XIV SBSI. p. 11 (2018)

47. Tsantalis, N., Chatzigeorgiou, A.: Identification of move method refactoring op-
portunities. TSE 35(3), 347–367 (2009)

48. Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A.,
Poshyvanyk, D.: When and why your code starts to smell bad. In: Proc. of the
37th ICSE. pp. 403–414 (2015)

49. Vale, G., Figueiredo, E., Ab́ılio, R., Costa, H.: Bad smells in software product lines:
A systematic review. In: Eighth SBCARS. pp. 84–94. IEEE (2014)

50. Vidal, S.A., Marcos, C., Dı́az-Pace, J.A.: An approach to prioritize code smells for
refactoring. ASE 23(3), 501–532 (2016)

51. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: Proc. of the 18th EASE. p. 38 (2014)

52. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in software engineering. Springer Science & Business Media (2012)

53. Xia, X., Wan, Z., Kochhar, P.S., Lo, D.: How practitioners perceive coding profi-
ciency. In: Proc. of the 41st ICSE. pp. 924–935 (2019)

54. Zhang, M., Hall, T., Baddoo, N.: Code bad smells: a review of current knowledge.
Journal of Soft. Maint. and Evol.: Research and Practice 23(3), 179–202 (2011)

55. Zhang, M., Hall, T., Baddoo, N., Wernick, P.: Do bad smells indicate” trouble” in
code? In: Proc. of workshop on Defects in large software systems. pp. 43–44 (2008)


