
Model-Based Testing in Agile Projects: An
Approach Based on Domain-Specific Languages?

Aline Zanin1, Avelino Fracisco Zorzo1, and Henry Cabral Nunes1

PUCRS - Porto Alegre, Brazil
aline.zanin@edu.pucrs.br, henry.numes@edu.pucrs.br and

avelino.zorzo@pucrs.br

Abstract. Model-Based Testing (MBT) can bring several benefits to
software quality. However, generally, MBT is applied in traditional soft-
ware development lifecycle models, with few studies exploring its ap-
plication in agile software development context. Hence, usually, agile
development teams (AT) do not benefit from the advantages that the
MBT technique provides, for example, reuse of artifacts and traceability
between requirements and test artifacts. Thus, this article presents an
approach for applying MBT in agile software development teams. This
approach is based on the use of a semi-natural language to write scenar-
ios for the automatic generation of models and test scripts. To exemplify
the application of this approach, we also present a Domain-Specific Lan-
guage (DSL) called Aquila, in which new functional test related keywords
are added to the Gherkin DSL. We also present, based on a literature
review, the majors challenges and difficulties of applying MBT in AT.
To validate the proposed approach a Focus Group study was used.

Keywords: Software Testing, Agile, DSL, MBT

1 Introduction

The increasing search for quality improvement in software products induces com-
panies to innovate and to optimize their processes, techniques and tools. Model-
based Testing (MBT) is one of the techniques that helps such improvement in
the context of software testing. MBT focuses on creating test artifacts and on
reusing models designed by development teams. In general, these teams create
models to perform activities such as requirements and systems analysis. So, MBT
uses these artifacts to facilitate the generation and maintenance of test artifacts
to improve traceability of system requirements and software testing [5].

MBT is widely used in traditional lifecycle software development, e.g. Wa-
terfall lifecycle. However, although the benefits of MBT are already known and
disseminated, few studies present the application of this technique in an agile
software development context, since applying MBT in an agile context brings

? This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de
Nivel Superior – Brazil (CAPES) – Finance Code 001

2 Aline Zanin, Avelino Fracisco Zorzo, and Henry Cabral Nunes

new challenges. Those challenges are related to time management and human
effort required to create models. Since the teams work with short cycles of con-
tinuous delivery, the time available for creating models, executing tests, and
correcting possible failures is reduced [11] [10] [9].

Furthermore, according to the Agile Manifest [1], it is very important that
Agile Teams (AT) use simple and efficient documentation. One way of doing that
could be to use software requirements specifications using a Domain-Specific
Language (DSL), for example Gherkin [4]. One the other hand, through the
scenarios written in Gherkin and using Behavior Driven Development (BDD)
[18], it is possible to generate methods (just skeletons) that will structure the
test automation for a specific functionality.

On the other hand, BDD does not completely automate the creation of scripts
for test automation, BDD only structures it. Therefore, it is still necessary for
the test analyst to code the test scripts, and this is a time-consuming activity
that could be used for other activities related to system development. MBT can
provide the complete automation of this process, optimizing the human effort
and time efficiency.

In this context, the research question of this study is: How can MBT
support the automated generation of test scripts in the agile software
development context?

In order to provide answers to the above question: 1) we analyzed the difficul-
ties and challenges to apply MBT in AT reported by researchers in the literature;
2) based on the difficulties and challenges identified by these studies, we propose
an approach for adopting MBT in AT; 3) taking into consideration Steps 1 and
2, we designed a new DSL, called Aquila; and, 4) to provide an evaluation of
this approach and language, we conducted a survey in which participants had
the opportunity to experiment Aquila, create a test scenario, and generate test
scripts. To confirm this evaluation we conducted a Focus Group study where we
discuss the applicability of Aquila.

This paper is organized as follows. Section 2 describes related work. Section 3
presents the challenges and difficulties to apply MBT in AT and also a set of
practices to facilitate the adoption of MBT in AT. Section 4 presents a DSL that
allows the use of MBT in AT. Section 5 describes the validation of our approach
with AT members. Finally, Section 7 presents the conclusion of this study.

2 Related Work

This section describes some of the papers that were analyzed in a systematic
literature review (SLR). We analyzed papers that present some discussion on
MBT and AT, and also describe some challenges and difficulties faced by AT
when applying MBT. The literature analysis is based on a previous SLR [2].
That SLR mapped all the studies that present approaches, strategies, techniques,
methods and methodologies for MBT adoption and were published up to 2016.
We analyzed the papers selected for that study [2], and by reading the titles
and abstracts, we extracted the papers that present MBT specifically applied to

Title Suppressed Due to Excessive Length 3

agile context [10] [17] [8] [13]. Later, based on the related work of these selected
papers, other papers were identified. The main papers directly related to this
work are mentioned next.

Törsel [22] presents a study that uses Domain-Specific Language (DSL) to
create models for test scripts generation. This study is different from ours, be-
cause the DSL used for creating models is not semi-natural language, it is similar
to a programming language.

Yue et al. [19] present an approach to performMBT based on DSL. The major
difference between our approach and the one proposed by Yue et al. is that we use
an extension to Gherkin to design scenarios and automatically generate models.
Besides that, using our approach it is easier to understand how the mapping
from the scenario to the model is performed, allowing to implement graphics
extension for visual display of this model. In Yue’s work, a behavioral model
is not generated, and it is difficult to analyze the flows generated by the MBT
technique.

Entin et al. [8] introduce an approach to use semi-natural language and
Gherkin to generate models to apply MBT. However, the scenarios must be
exclusively written using Gherkin, which does not have enough details to gener-
ate a complete model that allows the generation of test scripts. For this reason,
human interference is required to create the model, and no strategy is proposed
to automate the generation of test scripts from these models.

Li et al. [12] present an approach to generate Gherkin scenarios from mod-
els. This approach is similar to ours because both use Gherkin. However, our
approach generates models from scenarios and test scripts from models. So, it
is possible to create models and generate test scripts only using semi-natural
language in our approach.

Dwarakanath et al. [6] and Thummalapenta et al. [21] propose approaches
where DSLs are used to automatically generate test scripts. The DSLs used
in those works are similar to the one proposed in our approach, since all of
them use semi-natural language based on English. However, Dwarakanath and
Thummalapenta do not use the MBT technique. Thus, those works do not benefit
from the advantages provided by MBT. For example, in our approach, it is
possible to combine alternative system flows to generate test scripts that validate
all possible flows of the System Under Test (SUT).

3 Applying MBT in AT: Using a DSL

The main difficulties and challenges for using MBT in AT that we identified
through our systematic literature review, mentioned in Section 2, are sum-
marized as: 1) Models created by AT rarely contain enough details to apply
MBT [11] [10] [13]; 2) It is difficult to guarantee that all requirements are cov-
ered by the generated tests artifacts [17] [11]; 3) AT, in general, prefer easy to use
testing tools [11]; 4) Agile process often works with short development cycles [7]
[8]; 5) Lack of time to create models [7] [8]; 6) Continuous requirements changes
[7] [9] [17] [8]; 7) Difficult test artifact maintenance [9] [8]; and, 8) Professionals

4 Aline Zanin, Avelino Fracisco Zorzo, and Henry Cabral Nunes

do not have enough expertise in software modeling languages such as Unified
Modeling Language (UML) [9] [8] [13].

Based on the difficulties and challenges mentioned above, we can point out
to the following improvements in the MBT process to make it applicable by AT:

1. Supporting automatic creation of models, based on the requirements doc-
uments usually adopted by AT, such as user stories or scenarios. This is
important for reducing the learning curve and simplify the adaptability of
the teams to the technique.

2. Supporting requirements changes by modeling adaptation.
3. Supporting automation of script generation, avoiding the generation of man-

ual test cases.
4. Avoiding the generation of excessive documentation.

Based on these suggestions, we propose, in this work, a solution focused on
the automation of model creation. To this end, the idea is that the software
testers write requirements in a semi-natural language, and from this language,
models could be generated automatically.

One example of semi-natural language used to write scenarios in AT is
Gherkin [4]. However, in order to make possible to generate models to apply
MBT in AT, the language used to write scenarios, should also provide a sim-
ple way of describing, also, functional testing requirements, which currently is
not supported by Gherkin, and, therefore, an extended version of Gherkin is
needed (see Section 4). Gherkin scenarios are written basically using the key-
words GIVEN, WHEN, THEN and AND. GIVEN represents the actual state of
the system, WHEN represents one action performed in the system and THEN
represents the result of this action. The AND keyword can be used with GIVEN
and THEN keywords to complement the information.

Therefore, in order to apply a DSL in MBT and AT, the following guidelines
should be observed when designing a new DSL:

1. All scenarios must have, in addition to the status information and expected
result, details of actions that must be performed by the tester in the system.

2. Scenarios should not contain too much information, for example, they should
not explicitly contain the step-by-step test case describing each of the fields
in a form. This is because in this case the improvement in productivity,
through automation, would be negatively affected.

3. Scenarios should be complemented with keywords that represent generic be-
haviors (which often happens in several functionality), for example, filling in
all fields in a form with valid information.

4. Scenarios should be complemented with generic result verification informa-
tion, for example, validating a value in a form.

5. Each scenario should the converted to a model, in order to be able to apply
MBT.

6. From the generated model, it should be possible to create test artifacts for
any system platform.

Title Suppressed Due to Excessive Length 5

7. From the generated model, it should be possible to create test artifacts for
any functional testing tool.

From the above mentioned guidelines, a new Domain-Specific Language,
called Aquila, was created. This new language includes each of the above-
mentioned guidelines to Gherkin scenarios. This new DSL is described in Sec-
tion 4.

4 Aquila - a DSL for Agile Functional Testing

Aquila is a Domain-Specific Language for agile functional testing. Hence, one of
the major requirements of Aquila design is that Aquila can be used to write test
documentation, e.g., test scenarios. In this context, Aquila was designed as an
extension of Gherkin, thus, the main characteristic of Aquila is the insertion of
test information in Gherkin scenarios. This test information is represented by
adding new keywords in test scenarios. These new keywords are related to the
user interaction with the system, for example: input values and click buttons.
This test information will allow one to automatically generate a model that will
later be translated into test scripts to execute the test automatically. For the
definition of these keywords, we performed a mapping of the main actions that
a user can perform in a system. This mapping is performed initially through
the W3C [23] documentation1. We also address some aspects of user interaction
based on our experience performing software testing in industry [15] [3] [14].

Each Aquila keyword is associated to a Gherkin keyword. The association
between Aquila keywords and Gherkin keywords follows the following pattern:
Aquila keywords that represent actions are associated to the Gherkin keyword
WHEN; Aquila keywords representing results are associated to the THEN key-
word; and, symbols “{ }” and “< >” are used with the GIVEN keyword.

Table 1 shows the selected keywords, the behavior represented by each of
the keywords and the associated Gherkin keyword. These keywords are used in
the mapping between the scenarios and the models, in which each keyword has
a specific representation in the generated models.

Some Aquila scenarios can require input or selection of values, i.e., scenar-
ios that use keywords: put, use-valid-data, checked, choose, and select-data. For
this purpose, input tables are created and in these tables the name of the fields
and their respective input values are specified. For example, for a scenario that
requires input data for the fields “Country” and “State”, the following piece of
Aquila code would represent the tables that contains field names and their re-
spective values. This example can be seen in Figure 1

For the use-valid-data keyword, it is possible to create a table with all fields,
and respective values, as shown in the next piece of Aquila code. This example
cam be see in Figure 2.

1 https://www.w3.org/Consortium/

6 Aline Zanin, Avelino Fracisco Zorzo, and Henry Cabral Nunes

Table 1. Aquila DSL Keywords

Aquila keyword Definition Gherkin
keyword

< > Used to enter a URL GIVEN
{ } Used to reference a scenario in another sce-

nario
GIVEN

click[field] Represents the action of clicking on a specific
field

WHEN

click-link[field] Represents the action of clicking on a link WHEN
put[field] Represents the action of inserting values in a

specific field
WHEN

use-valid-data Represents that all fields present on the fea-
ture under test and listed in the input table
will receive valid values

WHEN

dont-fill-out[field] Represents that no values will be entered in a
specific field

WHEN

checked[field] Represents the selection of an option in a
checkbox

WHEN

choose[field] Represents the selection of an option in a radio
button

WHEN

select-data[field] Represents the selection of an option in a list WHEN
mouse-over[field] Represents the placement of the mouse over a

given field
WHEN

enable[field] Represents verification if a field is active THEN
disable[field] Represents verification if a field is not active THEN
showed[field] Represents checking for the presence of a par-

ticular word or phrase on the SUT
THEN

opened[url] Represents checking the correct opening of a
page

THEN

showed-title[word] Represents page title verification THEN

When I select-data[Country]
| Country |
| USA |
And I select-data[State]
| State |
| Nevada |
| Texas |

Fig. 1. Select-data keyword example

When I use-valid-data:
| Country | State | Email | FirstName |
| France | Loire | alice@test.com | Alice |

Fig. 2. use-valid-data keyword example

Title Suppressed Due to Excessive Length 7

4.1 Aquila DSL Usage

In this section, we describe how a DSL, i.e., Aquila, is used in order to gener-
ate and execute test scripts in the context of AT. The complete flow of Aquila
utilization is formed by six steps (see Figure 3), in which, two require human
interaction (Writing Aquila scenarios and Test Script Improvements), three are
automatically executed by Aquila tool (Model Generation, Test Sequence Gen-
eration and Test Script Generation) and one is executed by a testing automation
tool, for example, Selenium Webdriver. The Aquila tool is available for down-
loading at: https://github.com/alinnezanin/Aquila/

 Writing
 Aquila's

scenarios

 Test
 Sequence
Generarion

 Model
Generation

 Test
 Script
Generation

 Test
 Script
Improvements

 Test
 Script
Execution

Manual Activities

Activities Executed By Aquila

Activities Executed By
Some Test Automation Tool

Fig. 3. Aquila steps

1) Writing Aquila’s scenarios: This is one of the majors steps of the
Aquila usage process. In this step, the scenarios are created. To exemplify each
step, we use an online web store, i.e., http://demo.cs-cart.com/. For example, to
test this web store we chose the scenario that validates the registering of a new
customer and the insertion of a new product into the shopping cart. Figure 4
shows an Aquila code that represents this scenario. In the code, it is possible to
see the use of the following tags: click-link, click, use-valid-data, put and showed.

2) Model Generation. The model chosen for MBT application, in this
work, is the Directed Acyclic Graph (DAG). In the model generation process,
each DAG node represents an Aquila keyword used in the scenario. The exception
to this rule is the use-valid-data keyword that generates not only one node, but
one node for each field present on the system and specified in the input table.
For the scenario in Figure 4, the respective model is represented in Figure 5. In
this model, it is possible to realize that there is some alternative flows. These
flows represent the second input option for the use-valid-data and put keywords
specified in the input table (lines 7,8,13 and 14 of the scenario in Figure 4). It
is important to highlight that the number in the DAG nodes is the line number
in the scenario code.

2 3 4

8

7 7 7

8 8

9 10 13

14

18 171615

Fig. 5. New User Registration Model

8 Aline Zanin, Avelino Fracisco Zorzo, and Henry Cabral Nunes

1. Scenario:Register Customer and Add Product
2. Given <https://demo.cs-cart.com >
3. When I click-link[my account]
4. And I click[register]
5. And I use-valid-data:
6. |email| password| news|
7. |custo@mer.com | c123@ |news|
8. |tes@te.com | a143@ |news|
9. And I click[register]
10. And I click[search-performed]
11. And I put[search-performed]
12. |search-performed|
13. |bike|
14. |game|
15. And I click[search]
16. And I click-link[Catania]
17. And I click[addToCard]
18. Then showed[The product was added to your cart]

Fig. 4. Register a new customer and add a product to the customer cart

3) Test Sequence Generation. A test sequence is generated before the
test script creation and describes the path traversed between the initial node
and the last node in the graph. To generate a test sequence, we use the Depth-
First Search algorithm (DFS) [20]. Using this algorithm, test sequences that
combine the inputs used in each field of the system are generated. This ensures
that if there are peculiar behaviors related to the combination of two or more
inputs, these behaviors are tested.

The sequences are formed by the numbers that represent lines of a scenario
and their respective nodes in the DAG. For a scenario line that contains the
use-valid-data keyword, this line will be repeated several times in the sequence,
because this keyword generates multiple nodes in the DAG, one for each field
that will be filled.

For the model in Figure 5, four test sequences are generated. This is because
there are two alternative flows in the model, and Aquila combines these flows.
The following test sequences are generated:
1) 2 - 3 - 4 - 7- 7- 7 - 9 - 10 - 13 - 15 - 16 - 17 - 18
2) 2 - 3 - 4 - 7- 7- 7 - 9 - 10 - 14 - 15 - 16 - 17 - 18
3) 2 - 3 - 4 - 8- 8- 8 - 9 - 10 - 13 - 15 - 16 - 17 - 18
4) 2 - 3 - 4 - 8- 8- 8 - 9 - 10 - 14 - 15 - 16 - 17 - 18

4) Test Script Generation. The test script is based on the previously
generated models and test sequences. For each model, one or more test scripts
can be generated according to the number of generated test sequences. Figure 6
shows a snippet of a code generated for the Selenium Webdriver tool. This tool
was chosen because it is widely used within IT companies. However, the same

Title Suppressed Due to Excessive Length 9

Aquila scenario can be used to generate scripts for different tools or languages.
Figure 6 shows the code for the “Register Customer and Add Product” scenario.

1 @Test
2 public void newCustomerRegistration () {
3 Webdriver driver = new FirefoxDriver ();
4 driver.get("https :// demo.cs-cart.com");
5 WebElement linkText = driver.findElement(By.linkText("

my account"));
6 linkText.click();
7 WebElement register = driver.findElement(By.name("

register"));
8 register.click();
9 WebElement email = driver.findElement(By.name("email"))

;
10 email.sendKeys("cuso@mer.com");
11 WebElement password = driver.findElement(By.name("

password"));
12 password.sendKeys("c123@.com");
13 WebElement register2 = driver.findElement(By.name("

register"));
14 register2.click ();
15 (...)
16 }

Fig. 6. Generated code for “Register Customer and Add Product” scenario

5)Test Script Improvements. These improvements might be necessary
when a test engineer uses some field name different from the one used in the
application, to correct some mistake in the scenarios, or to create a script for an
action that is not completely covered by Aquila. In these cases a partial script
is generated, and the test engineer will have to complete the generated script.
The partial script is generated into a library and can be edited at any time.
This allows the test engineer to customize their tests for peculiar situations not
covered by Aquila tags.

6) Test Script Execution. To execute the test scripts, it is necessary to
use a traditional testing automation tool, for example: Seleniun Webdriver. This
tool should be compatible with the syntax of the generated script.

5 Aquila Validation: a Focus Group Study

In order to validate the applicability of Aquila, we used a Focus Group method.
Hence, we established two research questions (RQ) that we wanted to answer by
the end of the Focus Group study: RQ1) What is the specialists perception on the
productivity that can be achieved when using Aquila, compared to manual test
scripts creation for test automation? RQ2) What are the experts’ perceptions

10 Aline Zanin, Avelino Fracisco Zorzo, and Henry Cabral Nunes

regarding the learning curve on the use of Aquila, when compared to the learning
curve for the manual test scripts creation for test automation?

Once the research questions were defined, we set the profile and the number
of specialists that would participate in the Focus Group execution. There were
eight people participating in this Focus Group session. Table 2 presents an
overview on the subjects profile. The Focus Group session was performed based
on following questions:

Table 2. Individual Subjects Profile

S1 Professional with more than 2 years of programming experience, initial knowledge
in test automation, business and Gherkin and no management knowledge.

S2 Professional with up to 2 years of Gherkin test automation experience and more
than 2 years of programming, business and management experience.

S3 Professional who has up to 2 years of Gherkin experience, initial knowledge in
test and business automation and no programming knowledge and agile project
management.

S4 Professional with initial knowledge in test automation, business, management and
Gherkin and no programming knowledge.

S5 Professional who has more than 5 (five) years of testing experience and business
experience, has up to 2 (two) years of Gherkin experience and has initial knowledge
in programming and agile project management.

S6 Professional with up to 2 (two) years of experience in test automation and pro-
gramming, with more than 2 (two) years of business and management experience
and with more than 5 (five) years of experience with Gherkin.

S7 Professional with more than 5 (five) years of programming experience, up to 2
(two) years of experience in test automation and initial knowledge in business,
management and Gherkin.

S8 Professional with up to 2 (two) years experience with Gherkin test automation and
more than 5 (five) years experience with programming, business and management.

1. Do you believe that using Aquila can improve team productivity? If yes,
how?
– Discussion analysis: For this topic it can be said that the group consid-

ered that Aquila influences positively the team productivity, provided
that some conditions are respected: the tester must have a minimum
knowledge on test automation; the business person needs to be involved
with the creation of the scenarios; and, the project must be organized
for this framework of scenario utilization and test automation. These
conclusions are reinforced by the following statements:
“I have a feeling that if the tester is a beginner on test automation, it

is a lot easier, but it is a feeling [S4].”
“If we take this to the business area, for them to write the test scenarios,

and someone else just complement them, it is much faster for them
to type keywords than it is to write Java code [S2].”

Title Suppressed Due to Excessive Length 11

2. Compared to the manual creation of scripts for test automation, would you
consider Aquila more productive, less productive or indifferent? Justify.
– Discussion analysis: In this topic, there was a consensus among partic-

ipants that Aquila could present an improvement in productivity when
compared to the manual creation of scripts for test automation. How-
ever, some limits were pointed out by the participants that should be
the focus of the researchers in the development of future work related to
Aquila. These conclusions are reinforced by the following statements:
“But compared to manual test scripts creation I believe it would increase

productivity for the reasons already mentioned [S4].”
“It could be productive to some extent depending on what would have

to be changed manually [S7].”
3. What is your perception regarding the learning curve of the use of Aquila in

relation to the learning curve for manual creation of scripts for test automa-
tion?
– Discussion analysis: Analyzing the participants comments, we can con-

clude that Aquila could easily be learned and used by professionals. Like
any innovative tool, Aquila requires a learning curve and a period of
adaptation, but the discussions indicate that the curve is smaller than
the curve that usually exists for learning, for example, a programming
language and that Aquila can easily be used in conjunction with any
other automation tool. Furthermore, Aquila will generate the code that
represents actions, and a beginner programmer could see this code gener-
ated, being able to analyze, understand and memorize it. These findings
are reinforced by the following statements from the participants.
“In my opinion Selenium (manual creation) is more complex, Aquila

does not have many commands like Selenium, so it is easier [S6].”; “I
think it is simpler because it is closer to a natural language [S8].”

“I think the Aquila learning curve is less steep, but a person needs to
know how to write tests manually to be able to edit them [S5].”

4. Would you apply Aquila on a test project that is working with agile software
development? Why?
– Discussion analysis: In this topic several opinions were expressed by the

participating subjects. No participating subject stated that they would
not use Aquila, however, several points were raised that would be con-
sidered by professionals when deciding to use Aquila or not. The main
point, which was quoted by several participants, is that Aquila applica-
tion is better recommended in projects that are already using the BDD
technique or writing requirements using Gherkin. Another factor consid-
ered to be determinant in the choice of whether or not to use Aquila is
the amount of changes that need to be made to the Aquila generated
scripts, and this amount of changes is highly related to system complex-
ity and type of features that the system contains. Analyzing the subjects
comments, we can say that Aquila can be applied to the context that it
was proposed to. It was designed for AT that use Gherkin for writing
requirements, or AT that are looking for using this approach. As for the

12 Aline Zanin, Avelino Fracisco Zorzo, and Henry Cabral Nunes

amount of scripts changes needed, Aquila is prepared to automate most
of the actions that can be performed on the system for the domain to
which it was proposed to.

It is important to emphasize that the participants already had previous con-
tact with these questions. After reading, and answering the questions individu-
ally, they discussed the same questions as a group. The conclusions mentioned
above are related to the group discussion.

6 Aquila Validation: a Survey with professionals

This study aimed to understand the interference of DSL Aquila on productivity
and test automation learning curve, considering the opinion of testing engineers.
For this study we brought together a group of professionals who work with
software testing on agile teams. These professionals used the Aquila DSL, and
based on this usage, they provided feedback about Aquila.

Thirteen professionals participated in this study. All of them work in agile
teams (their profile is detailed in Table 3). The profile considers the profession-
als self-assessment about their previous knowledge according to the following
following criteria: Beginner: I have knowledge, I can perform basic tasks; Inter-
mediate: I have knowledge and can perform complex tasks; Advanced: I have
knowledge and can perform all kinds of tasks including management; I am not
aware: Professional without knowledge on the subject.

Table 3. Profile of the subjects

Knowledge area Knowledge level
Beginner Intermediate Advanced Not aware

Test Automation 9 4 0 0
Gherkin 6 4 0 3
Agile Methods 4 7 2 0
Software Test 3 4 0 3

The participants took one hour to write the scenarios and to generate the
scripts. After completing the challenge, participants answered questions on: 1)
Learning difficulty of DSL Aquila; 2) Possibility to write scenarios and generate
scripts using Aquila in a sprint of an agile project; 3) Advantages and disad-
vantages of using Aquila in an agile project. They were also asked to suggest
improvements on the language and tool.

The first question is related to the difficulties encountered in learning to use
Aquila. In this sense, ten participants answered that they consider it was easy
to learn; two participants considered that the level of difficulty was average, and
one participant considered it difficult.

In the second question, a comparison is made between the easiness to learn
Aquila against the easiness to learn other testing tools. For this question, seven

Title Suppressed Due to Excessive Length 13

participants found it was easier to learn Aquila, four mentioned the learning
curve was similar, and two said it was harder. The two participants, who believed
it was more difficult to learn Aquila than another testing tool, had never seen
Gherkin before, and, therefore, either way, previously knowledge on using a DSL
(for example, Gherkin) may have influenced the participants perception.

The third question aimed to understand if it would be possible to complete
the DSL Aquila utilization cycle in an agile project sprint. For this question, only
one participant said he did not believe using Aquila would help in an agile project
sprint. Regarding the advantages, disadvantages and improvements of Aquila,
several professionals have pointed out as advantages the easiness of use and the
fact that the tool generates scripts. Regarding disadvantages, one participant
mentioned that the code generated by the tool presented some faults (this has
already been reviewed and the faults corrected). Some of the participants also
pointed out that tool usability should be improved.

7 Conclusion

In this paper we presented an approach to use MBT in Agile projects. This ap-
proach was validated through a survey in which participants had the opportunity
to experiment Aquila, and its tool. In the experiment, all participants were able
to complete the full scenario creation and test scripts generation. This produced
an excellent view from the participants in the sense that Aquila can positively
influence productivity and facilitate the learning of test automation. This result
confirms the result that we had already obtained through a focus group study,
before the tool was ready to be used. Some improvements are still necessary,
as mentioned before, in order to the full adoption of our language and tool in
actual agile environments. For example, a framework such as Usa_DSL[16] may
be used to help improving Aquila usability.

References

1. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.: Manifesto for agile
software development. http://www.agilemanifesto.org (2001), access in 03/07/2019

2. Bernardino, M., Rodrigues, E.M., Zorzo, A.F., Marchezan, L.: Systematic mapping
study on mbt: tools and models. IET Software 11(4) (2017)

3. Bernardino, M., Zorzo, A.F., de M. Rodrigues, E.: Canopus: A domain-specific
language for modeling performance testing. In: 9th IEEE International Conference
on Software Testing, Verification and Validation (ICST) (2016)

4. Cucumber: Gherkin. https://docs.cucumber.io/gherkin/ (2019), access in
03/07/2019

5. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J., Lott, C.M., Patton, G.C.,
Horowitz, B.M.: Model-based testing in practice. In: International Conference on
Software Engineering (ICSE) (1999)

6. Dwarakanath, A., Era, D., Priyadarshi, A., Dubash, N., Podder, S.: Accelerating
test automation through a domain specific language. In: 10th International Con-
ference on Software Testing, Verification and Validation (ICST) (2017)

14 Aline Zanin, Avelino Fracisco Zorzo, and Henry Cabral Nunes

7. Entin, V., Winder, M., Zhang, B., Christmann, S.: Combining model-based and
capture-replay testing techniques of graphical user interfaces: An industrial ap-
proach. In: 4th International Conference on Software Testing, Verification and
Validation Workshops (ICSTW) (2011)

8. Entin, V., Winder, M., Zhang, B., Claus, A.: A process to increase the model
quality in the context of model-based testing. In: 8th International Conference on
Software Testing, Verification and Validation Workshops (ICSTW) (2015)

9. Entin, V., Winder, M., Zhang, B., Christmann, S.: Introducing model-based testing
in an industrial Scrum project. In: 7th International Workshop on Automation of
Software Test (AST) (2012)

10. Jalalinasab, D., Ramsin, R.: Towards model-based testing patterns for enhanc-
ing agile methodologies. In: 14th International Conference on Intelligent Software
Methodologies, Tools, and Techniques (SoMeT) (2012)

11. Katara, M., Kervinen, A.: Making model-based testing more agile: a use case driven
approach. In: 11th Haifa Verification Conference (HVC) (2006)

12. Li, N., Escalona, A., Kamal, T.: Skyfire: Model-based testing with cucumber.
In: 9th International Conference on Software Testing, Verification and Validation
(ICST) (2016)

13. Li, N., Escalona, A., Kamal, T.: Skyfire: Model-based testing with cucumber.
In: 9th International Conference onSoftware Testing, Verification and Validation
(ICST) (2016)

14. de M. Rodrigues, E., Bernardino, M., Costa, L.T., Zorzo, A.F., de Oliveira, F.M.:
Pletsperf - A model-based performance testing tool. In: 8th IEEE International
Conference on Software Testing, Verification and Validation (ICST) (2015)

15. Rodrigues, E.M., de Oliveira, F.M., Costa, L.T., Bernardino, M., Zorzo, A.F.,
do Rocio Senger de Souza, S., Saad, R.S.: An empirical comparison of model-based
and capture and replay approaches for performance testing. Empirical Software
Engineering 20(6), 1831–1860 (2015)

16. Rodrigues, I.P., Zorzo, A.F., Bernardino, M., de Borba Campos, M.: Usa-DSL: us-
ability evaluation framework for domain-specific languages. In: 33rd Annual ACM
Symposium on Applied Computing. pp. 2013–2021 (2018)

17. Sivanandan, S., B, Y.C.: Agile development cycle: Approach to design an effec-
tive model based testing with behaviour driven automation framework. In: 20th
Annual International Conference on Advanced Computing and Communications
(ADCOM) (2014)

18. Smart, J.: BDD in Action: Behavior-Driven Development for the Whole Software
Lifecycle

19. Tao, Y., Shaukat, A., Zhang, M.: Rtcm: A natural language based, automated, and
practical test case generation framework. In: International Symposium on Software
Testing and Analysis (ISSTA) (2015)

20. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM journal on com-
puting 1(2), 146–160 (1972)

21. Thummalapenta, S., Sinha, S., Singhania, N., Chandra, S.: Automating test au-
tomation. In: 34th International Conference on Software Engineering (ICSE) (2012)

22. Törsel, A.: A testing tool for web applications using a domain-specific modelling
language and the nusmv model checker. In: 6th International Conference on Soft-
ware Testing, Verification and Validation (ICST) (2013)

23. W3C: Html input types. https://www.w3schools.com/ (2018), access in
03/07/2019

