Software Deployment and Self-adaptation of IoT
Systems

Ivan Alfonsol[0000—0003—3940—0629]
Department of Systems and Computing Engineering, Universidad de los Andes,
Bogota, Colombia
id.alfonso@uniandes.edu.co

Abstract. Traditional software engineering methods bring challenges to
the construction of IoT systems. In particular, software deployment in
distributed systems is not trivial. Resource limitations at the edge/fog
layer nodes and heterogeneity of technologies and communication proto-
cols are some of the challenges that can generate failures in deployment
and operation. It is necessary to make intelligent decisions on the loca-
tion of the deployed software in the system infrastructure to favor the
quality of service (QoS). Additionally, the operation of IoT systems with
distributed architectures becomes complicated due to the dynamic en-
vironment and the events produced that can impact QoS. We present
Ph.D. Thesis proposal for intelligent decision making of software re-
deployments in the edge/fog layer devices of a distributed IoT system,
and a method for self-adapting the system architecture.

Keywords: Internet of Things - Software deployment - Self-adaptive
architecture - Edge computing - Fog computing.

1 Introduction

About twenty years ago the term Internet of Things (IoT) was publicly used by
Professor Kevin Ashton [2]. From that moment, the interest around IoT has been
growing and a lot of startups and companies working in this area have emerged.
Gartner Inc. envisions that by 2020, about 20 billion IoT endpoints will be in
use [4]. However, this growth in the use of IoT introduces challenges in software
development and systems operation. Designing IoT systems using traditional
architectures and software development methodologies present problems such as
slow upgrades, security issues, increased costs, low performance, and reduced
platform reliability [10].

Traditionally, software engineering has addressed these issues by introduc-
ing new architectures, techniques, and development methodologies that have
been adopted by vendors and software development teams. For example, DevOps
methodology promises to improve the performance of work teams and stream-
line the tasks of software development and operation of the system. DevOps
combines development and operation in a single process consisting of several

stages in a loop. In the literature, the use of DevOps predominates in web de-
velopment mainly in SaaS applications, but there are few advances in the use of
this methodology in the domain of IoT. Furthermore, there are some problems
to adopt DevOps for IoT systems. For example, the complexity and limitations
of creating test environments due to heterogeneity of device hardware [7]. Also,
the complexity to remotely deploy software on tiny devices that do not sup-
port containerization or have no Internet connection [11], and the complexity to
deploying and orchestrating software on systems with distributed architecture.
Additionally, in the operation state the dynamic environment in an IoT system
induce changes that impacts quality of service (QoS). In this research, we pro-
pose an approach to deploying and orchestrating software on IoT systems with
distributed architectures, as well as a strategy for self-adapting the architecture
to dynamic events that affect QoS.

The conventional IoT architecture consists of three main layers: (1) the cloud
layer, which has unlimited processing and storage resources, hosts the applica-
tion logic and perform the processing tasks; (2) the device layer which contains
the system devices such as sensors and actuators; (3) and the network layer
—composed of several types of communication technologies— which enables com-
munication between physical layer devices and cloud layer servers. This central-
ized architecture reduces maintenance costs and application development efforts,
but it has limitations such as low latency response, security risks, and high band-
width consumption [5]. Distributed IoT architectures have emerged to address
these problems. Edge and fog computing are technologies introduced as layers in
a decentralized IoT architecture. Both technologies offer advantages in terms of
latency, security and bandwidth usage. Because these allow move computation,
storage, communication, control, and decision making closer to the network edge
where data is being generated. This research addresses distributed architectures
for IoT systems, to take advantage of edge and fog computing.

2 Related Work

In order to identify and to analyze relevant studies, we conducted a Systematic
Literature Review (SLR). The SLR helped us systematically reach a comprehen-
sive and fair assessment of the topic. The main goal of the SLR was to identify
the dynamic environmental events in the physical and edge/fog layers of an IoT
system that could impact its QoS. In addition, we classified the strategies to
achieve this self-adaptation and we identified weaknesses.

After the screening and study quality assessment stages, we obtained 20 rele-
vant studies to the research. We found six dynamic events that impact the QoS of
the ToT system: (1) mobility client, (2) dynamic data transfer rate, (3) dynamic
network connectivity, (4) attacks from the traffic sensor, (5) failures and software
aging, and (6) important event detected by sensors. Some of the least explored
events by the community are 5 and 6 (failures and software aging and important
event detected by sensors). For example, studies that addressed important event
detected by sensors —as [16]— proposed an IoT architecture that detects a physi-

Software Deployment and Self-adaptation of IoT Systems 3

cal event (e.g., when it starts raining) and changes the priority of the sensor data
that is sent for analysis in the cloud. This dynamic architecture was designed
using Flow-Based Programming (FBP), and the adaptive decisions were made
by analyzing the data in an edge layer device. [14] proposed an architecture for a
Video Surveillance System that horizontally scales virtual machines deployed in
fog layer nodes when emergency surveillance was detected by the cameras. This
architecture was implemented in an OpenStack based virtualization environment
using Network Functions Virtualization (NFV) and Software-Defined Network-
ing (SDN). Studies that addressed the issue of failures and software aging —as
[15] and [9]- propose strategies for software deployment in the edge and fog
layers of the architecture. For instance, [15] proposed Foggy, a framework used
to automate application deployment in Fog Computing architectures. Foggy was
based on the use of Docker containers and deployment rules to facilitate dynamic
resource provisioning.

We found four techniques or strategies used to address these dynamic events:
(1) data flow reconfiguration, (2) auto-scaling of services and applications, (3)
software deployment and upgrade, and (4) task prioritization in edge/fog nodes.
Some of these strategies require tasks of deploying, updating, or moving software
artifacts on the edge/fog layer nodes and devices. Most of the analyzed studies
semi-automate these tasks but the allocation decisions in the nodes are taken by
DevOps engineer. Intelligent deployment and location decisions must be made by
analyzing the current and historical metrics information about nodes resources
consumption and QoS.

We propose an approach for smart re-deployment in distributed architec-
ture IoT and to self-adapt the system to two dynamic events that impact the
QoS (failures and software aging and important event detected by sensors). In
contrast to these studies, we are interested in a method of monitoring and log-
ging metrics about the node resources consumption and QoS. One of the com-
ponents of our proposed solution analyzes this information to take intelligent
re-deployment decisions.

3 Problem Statement

Most of the strategies we found in the literature to adapt the architecture IoT
systems require deploying, updating, or moving software artifacts between nodes
of the three layers: physics, edge/fog, and cloud. However, managing software
deployments on IoT systems poses challenges due to the heterogeneity of com-
munication devices and protocols. Unlike the cloud layer, at the edge/fog layer
resources are not centralized and the network environment is heterogeneous,
making it difficult to manage resources to balance the load and dynamically scale
[3]. In addition, edge nodes have limited computational resources unlike cloud
servers. Because of these reasons, the orchestration strategies and tools currently
used in the cloud must be adapted to work together between the edge/fog and
cloud layers.
We address two dynamic events mentioned in the SLR chapter 2:

Failures and software aging [oT systems require frequent software de-
ployments, software updates, or movement of software artifacts, either to solve
problems, improve performance, improve system security, or expose new services
to the end-user. However, automating software deployment in IoT systems is a
challenge given the heterogeneity and the large number of devices that must
be handled. Intelligent allocation decisions are crucial to efficiently deploy soft-
ware at the edge/fog layer of the system [13]. Kubernetes® (an open-source tool
for automating the management of containerized applications) has provisioning
capabilities, but these only consider the number of requested resources (CPU,
RAM) on each node. Other factors such as time, energy consumption, network
latency, reliability, bandwidth usage, and mobility should be taken into account
when choosing the nodes or the best location to deploy.

In addition, the update process may fail, or the software displayed may have
errors. One of the basic solutions, when an upgrade error occurs, is to roll back
to an earlier stable software version. However, there are deployment patterns pri-
marily used in web development to improve reliability and reduce the probability
of failure in a production environment (e.g., rolling deployment, blue-green, or
canary) [1]. These patterns must be explored to facilitate the process of deploy-
ment and to give reliability to software deployments on IoT systems.

Important event detected by sensors There are changes that can be de-
tected by system sensors that force the reaction or adaptation of the IoT system
architecture. For example, when the cameras of a video surveillance system de-
tect motion, the video is transferred to fog nodes or cloud servers in real-time to
be processed. Data sent from devices to application servers increases, therefore
the bandwidth consumption and response latency also increase, and the QoS of
the system will be affected. The IoT system should detect and adapt the archi-
tecture to support these events, e.g. scaling the application containers to meet
the increased load.

According to the identified problems, we propose a general research objec-
tive: to propose and develop an approach for smart software re-deployments in
IoT systems and the self-adaptation of the system architecture in response to
dynamic events detected by system sensors. We propose four sub-objectives: i) to
provide a mechanism to smart redeploy and orchestrate software in a distributed
architecture IoT systems; ii) to provide a mechanism to monitor and log metrics
in ToT systems; iii) to design (or reuse if existing) strategies to self-adapt the IoT
system architecture when a deployment failure or event is detected by system
sensors; and iv) to validate our approach by simulating a realistic case study and
evaluating the response to the dynamic events addressed.

In order to achieve these goals, we define three research questions and two
sub-questions: (1) How to take intelligent allocation decisions to redeploy and
orchestrate software containers in distributed architecture IoT systems? (1.a)
Which metrics should be analyzed to make intelligent allocation to software
re-deployment? (1.b) How to implement deployment patterns in a distributed
architecture IoT systems? (2) How to adapt the architecture of an IoT system

! https://kubernetes.io

Software Deployment and Self-adaptation of IoT Systems

Master Node (Orchestrator)

Dashboard Server
—— Kubernet
Scheduler Lernetes
Controller e
User > W
Interface Smart API Server W
Deployer

Cloud layer

___ 1|

Edge device / Fog node I Event Manager
Fog
Worker Kubelet nda Qsa Config. Event
L & ‘,,\,é Adaptation detector
mart I &
Client Pod I MQTT
R Client
. — R
Monitor (P Edge 3&0
device & 4@
&
! FF 1
[MQTT Broker]
Edge/fog layer

rrr R T e

Device layer

Fig. 1. High level architecture

to ensure QoS in response to dynamic events detected by system sensors? and
(3) How to monitor and log service quality metrics for an IoT system?

4 Proposed Solution

We propose an approach that has three main contributions: (1) it allows devel-
opers to deploy, manage, and monitor software version deployments on edge/fog
layer; (2) suggests intelligent re-deployment decisions after analyzing metrics
about node resources consumption and QoS; and (3), analyzes the sensor data
to detect dynamic events that induce adaptations in the architecture.

We designed a Kubernetes-based approach to the deployment and orches-
tration of edge/fog layer devices and nodes. We chose Kubernetes because it is
infrastructure-agnostic and allows developers to simplify their DevOps practices
by reducing the time spent at integrating with heterogeneous operating envi-
ronments. The basic control and management unit of Kubernetes is the Pod,
which represents the collection of containers and storage (volumes). Figure 1
shows the proposed high-level architecture which is composed of three layers:
the device layer contains the sensors and actuators of the system, the edge/fog
layer contains devices and nodes to perform tasks on the edge, and the cloud
layer contains the deployment orchestrator and the user interface. The main
components of the architecture are described in detail below.

Dashboard Server: the Dasboard Server provides the user interface and
enables the developer or DevOps engineers to perform the following tasks: (1)
configure and deploy software versions on the system’s edge devices and fog

nodes; (2) configure the adaptation rules composed of a stimulus and an action;
(3) visualize in real-time the status of the Pods deployed on the nodes. The
Config database stores the deployment configuration information and the adap-
tation rules created by the user. When the DevOps engineer configures and runs
a new software deployment, Smart Deployer component sends the information
to the master node to start the deployment. Master Node (Orchestrator):
the Orchestrator is responsible for the software deployment and the management
of resources (nodes). The Master Node has the following components: etcd is a
lightweight, distributed key-value data store that reliably stores cluster configu-
ration data; the Scheduler is a component that checks the available infrastructure
resources to locate the pods. the Kubernetes Controller is a daemon responsi-
ble to ensure the desired state of the cluster; the API Server is the gateway to
the Fog/edge node clusters (this component implements a RESTful APT over
HTTP); and finally, the Metrics component is a time series database respon-
sible for storing the metrics about nodes resources consumption and QoS. We
store this information to make an analysis of this data, give valuable feedback to
DevOps engineers, and suggest smart re-deployment decisions in future releases.

Edge Device and Fog Node: edge devices and fog nodes make up the
node clusters that are managed by the Master Node. Each Edge/fog node has
the following components: The Kubelet which connects to the A PIServer to syn-
chronize information and execute instructions sent from the MasterNode; the
Kubelet ensures that the containers described by the MarterNode are function-
ing and healthy on each node; the Monitor component is responsible for col-
lecting and storing the resource consumption metrics of each Pod in a Metrics
temp database (a lightweight key-value database to temporarily store the met-
rics); the Worker component periodically stores the metric information from the
temp database in the Metrics database of the cloud layer; and the MQTTClient
component is a client capable of interacting with MQTT servers through the
publish /subscribe pattern.

MQTT Broker: the MQTT Broker is the communication bridge between
the device layer devices and the edge/fog layer nodes. The MQTT communica-
tion protocol is highly used in IoT systems due to the advantages of the pub-
lish /subscribe pattern regarding scalability, asynchronism, decoupling between
clients, low bandwidth, and power consumption.

Event Manager: the controller component is responsible for applying the
adaptation rules defined by the DevOps engineer. An adaptation rule consists
of a stimulus and an action. The stimulus can be detected by analyzing sensor
data, for example when a temperature sensor exceeds a limit or when a surveil-
lance camera detects movement. The action is the adaptation of the system in
response to the stimulus, such as scaling containers on edge devices, stopping the
execution of containers, or moving pods from one node to another. The Event
Detector component analyzes the sensors data to detect dynamic events. When
a dynamic event is detected, the Config Adaptation component makes the nec-
essary adaptations to the architecture according to the configured adaptation
rule.

Software Deployment and Self-adaptation of IoT Systems 7

5 Methodology and Preliminary Results

Our research began with an exploratory stage, in which we conducted a system-
atic literature review to understand the needs and challenges in the operation
of TIoT systems. The SLR is based on the methodology proposed by Kitcheham
et al. [6], and it consists of six main steps (planing, search process, inclusion
and exclusion criteria, study quality assessment, data collection, and data anal-
ysis). For the development stage, we use the Design Science Research method-
ology (DSR) [8] which has as a fundamental block the design, construction, and
evaluation of artifacts. Following the DSR methodology, we designed an initial
approach for semi-automating deployment, monitoring and visualization of the
impact of software updates on edge devices of the IoT system. We used Docker
as the containerization technology and designed an orchestrator to manage soft-
ware version deployments. We monitored the availability and consumption of
computer resources of the edge devices and stored the information in a time-
series database. The historical information monitored is presented to the user
through metric-centered visualizations. Finally, we experimentally validated our
first development using a prototype of an IoT temperature monitoring system
and presented the work at MODELS Conference 2019 [12]. After analyzing the
results obtained with the first approach, we redesigned the architecture proposed
to use Kubernetes because of the advantages in automating the deployment
of software, orchestration, and management of distributed systems. We added
the components needed to monitor the system, analyze the monitoring data to
suggest re-deployment decisions, and make self-adaptations to the architecture.
Currently, we are in the construction stage of the software components of the
architecture. Shortly, we plan to evaluate the artifacts by making a case study
that experimentally validates the built prototypes. After analyzing these results,
we will make the necessary adjustments and improvements incrementally until
obtaining the expected results.

6 Conclusion and Future Work

We presented an approach for software deployments on IoT systems with a dis-
tributed architecture that monitors operation and self-adapts the system archi-
tecture. We propose the use of Kubernetes as a tool for deployment and orches-
tration in edge/fog layer devices and nodes. Pods and containers are periodically
monitored and its metrics are logged to analyze them and make intelligent soft-
ware re-deployment decisions. Our approach allows configuring adaptive rules to
support dynamic events detected by system sensors.

Future work is devoted to the development and validation of the architecture
components. In particular, the Config Adaptation and Smart deployer are the
components that make the adaptations in the architecture to maintain or im-
prove the QoS of the system. Additionally, we will perform the validation using
the test scenarios for the identified case study.

References

10.

11.

12.

13.

14.

15.

16.

. Ahmadighohandizi, F., Systé, K.: Application development and deployment for iot

devices. In: European Conference on Service-Oriented and Cloud Computing. pp.
74-85. Springer (2016)

Ashton, K., et al.: That ‘internet of things’ thing. RFID journal 22(7), 97-114
(2009)

Giang, N.K., Lea, R., Blackstock, M., Leung, V.C.: Fog at the edge: Experiences
building an edge computing platform. In: 2018 IEEE International Conference on
Edge Computing (EDGE). pp. 9-16. IEEE (2018)

Hung, M.: Leading the iot, gartner insights on how to lead in a connected world.
Gartner Research pp. 1-29 (2017)

Jiang, Y., Huang, Z., Tsang, D.H.: Challenges and solutions in fog computing
orchestration. IEEE Network 32(3), 122-129 (2017)

Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman,
S.: Systematic literature reviews in software engineering—a systematic literature
review. Information and software technology 51(1), 7-15 (2009)

Lwakatare, L.E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H.H., Bosch, J.,
Oivo, M.: Towards devops in the embedded systems domain: Why is it so hard?
In: 2016 49th hawaii international conference on system sciences (hicss). pp. 5437—
5446. IEEE (2016)

March, S.T., Smith, G.F.: Design and natural science research on information
technology. Decision support systems 15(4), 251-266 (1995)

Morabito, R., Beijar, N.: A framework based on sdn and containers for dynamic
service chains on iot gateways. In: Proceedings of the Workshop on Hot Topics in
Container Networking and Networked Systems. pp. 42-47. ACM (2017)

Motta, R.C., de Oliveira, K.M., Travassos, G.H.: On challenges in engineering iot
software systems. In: Proceedings of the XXXII Brazilian Symposium on Software
Engineering. pp. 42-51 (2018)

Nguyen, P., Ferry, N., Erdogan, G., Song, H., Lavirotte, S., Tigli, J.Y., Solberg, A.:
Advances in deployment and orchestration approaches for iot-a systematic review.
In: 2019 IEEE International Congress on Internet of Things (ICIOT). pp. 53-60.
IEEE (2019)

Prens, D., Alfonso, 1., Garcés, K., Guerra-Gomez, J.: Continuous delivery of soft-
ware on iot devices. In: 2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C). pp. 734—
735. IEEE (2019)

Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Resource provisioning in fog
computing: From theory to practice. Sensors 19(10), 2238 (2019)

Wang, J., Pan, J., Esposito, F.: Elastic urban video surveillance system using edge
computing. In: Proceedings of the Workshop on Smart Internet of Things. p. 7.
ACM (2017)

Yigitoglu, E., Mohamed, M., Liu, L., Ludwig, H.: Foggy: a framework for con-
tinuous automated iot application deployment in fog computing. In: 2017 IEEE
International Conference on AI & Mobile Services (AIMS). pp. 38-45. IEEE (2017)
Young, R., Fallon, S., Jacob, P.: A governance architecture for self-adaption & con-
trol in iot applications. In: 2018 5th International Conference on Control, Decision
and Information Technologies (CoDIT). pp. 241-246. IEEE (2018)

