
A Test Strategy for Configurable Software
Systems Using Machine Learning

Fischer Ferreira

Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

fischerjf@dcc.ufmg.br

Abstract. Configurable software systems are software systems that can
be adapted or configured according to a set of features to increase reuse
and productivity. The testing process is essential because configurations
that fail may potentially hurt user experience and degrade the reputation
of a project. However, testing configurable systems is very challenging
due to the number of configurations to run with each test, leading to a
combinatorial explosion in the number of configurations and tests. Cur-
rently, several testing techniques and tools have been proposed to deal
with this challenge, but their potential practical application remains
largely unexplored. Our main goal is to investigate test strategies for
configurable systems and provide a method to improve the approaches
presented in the literature. To achieve this goal, we divided our work into
seven steps. We conducted a systematic mapping study for understanding
the state-of-the-art testing approaches for configurable systems. We are
also proposing a dataset with 30 configurable software systems, an exten-
sive test suite, failures found, and source code metrics. Furthermore, we
performed a comparative study with test tools from different strategies.
Finally, we introduce a new test strategy for configurable systems. At the
moment, we have a prototype tool to support our test strategy for config-
urable systems. In future purposes, we want to evaluate the efficacy and
efficiency of our approach to observing known failures. The preliminary
results of the work indicate that testing configurable software systems
is an interesting research topic with many opportunities and gaps in
the literature. A method that benefits from metrics extracted from the
source code of the configurable system could be a promising approach.
We believe that our approach can better the efficiency and efficiencies of
the state-of-the-art testing tools for configurable systems.

Keywords: Testing Configurable Systems · Machine Learning

1 Introduction

Configurable systems are software systems that can be adapted or configured
according to a set of features (configuration options). Configurable systems offer
numerous options to fit specific customer needs [18], and developers may activate
or deactivate options to address a diversity of deployment contexts and usages.



2 Fischer Ferreira

To ensure that all configurations correctly compile, build, and run, developers
usually spend considerable effort testing their systems because configurations
that fail may hurt potential users, and degrade the reputation of a project [8].

Software testing is a key component for ensuring that all configurations work
properly. However, testing configurable systems is more challenging than testing
monolithic systems. While in monolithic software systems there is only one con-
figuration, for configurable systems we need to run all tests in several different
configurations, which leads to a combinatorial explosion of configurations and
tests. Therefore, testing thoroughly, against all configurations, is a cost practice.
Alternatively, a popular strategy used in industry is to run the tests for a default
configuration. This approach is efficient, but it can miss bugs [7, 14].

Besides those two cases (testing only the default configuration or exhaus-
tively testing all configurations), several approaches for testing configurable sys-
tems have been proposed [13, 15, 17]. Some of them consider only the Feature
Model (FM)1 [10–12] in order to generate products to be tested (Combinatorial
Interaction Testing). However, they may explore configurations not reached by
tests. Other approaches [17] take the code (test or app) into account in addition
to FM, and dynamically explore all reachable configurations from a given test.
However, such dynamic techniques only explore configurations related to testing.
Even with a large number of testing techniques and tools for configurable sys-
tems [15, 17], their potential practical application remains mostly unexplored.
We still lack a deeper understanding of the effectiveness of test strategies for
configurations systems for finding failures in the configurable system with a test
suite.

This paper presents a proposal for a Ph.D. thesis in Computer Science. Our
main goal is to provide more effective strategies for testing configurable software
systems. For this purpose, we designed seven study steps including systematic
mapping study on detection of test strategies for configurable software systems,
empirical investigation of detection strategies, proposing a dataset with 30 con-
figurable software systems, a comparative study with test tools from different
approaches, the definition of a new test strategy and implementation of this
strategy. Finally, in future purposes, we want to evaluate the efficacy and effi-
ciency of our approach to observing known failures. Additionally, we report the
main results achieved with the study.

2 Background

2.1 Variability Encoding Overview

Configurable systems have long been studied by the software product line engi-
neering community [16] and represent a configurable set of systems that share a
common, managed set of options (or features) to address specific needs. Among
the strategies to introduce variability in software systems, variability encod-
ing has drawn practitioners’ attention since developers only need to annotate

1 The Feature Model defines valid feature combinations or configurations.



A Test Strategy for Configurable Software Systems Using Machine Learning 3

variation points on their existing systems. Thus, developers simply activate or
deactivate features to address different deployment contexts. For short, while
annotating variation points, developers should create a configuration file where
they determine options that are going to be active in a target variation.

Listing 1 presents a fragment of source code in a configurable systems named
Companies. In this example, the method getTotal returns a string containing
a calculated value. If the feature TOTAL WALKER is active, the method
returns the value calculated by the TotalWalker class. If the feature TO-
TAL REDUCER is active, the method returns the value calculated by the
TotalReducer class. On the other hand, if the features TOTAL WALKER
and TOTAL REDUCER are not active, no value will be calculated.

1 public String getTotal () {

2 String value = "";

3 if (Configuration.TOTAL_WALKER) {

4 TotalWalker walker = new TotalWalker ();

5 walker.postorder(currentValue);

6 value = Double.toString(walker.getTotal ());

7 } else if (Configuration.TOTAL_REDUCER) {

8 TotalReducer total = new TotalReducer ();

9 double valueDouble = total.reduce(currentValue);

10 value = Double.toString(valueDouble);

11 }

12 return value;

13 }

Listing 1.1. Variability Encoding Example

2.2 Testing Configurable Systems

Fig. 1. Feature Interaction Failure

A major challenge for developers of configurable systems is to ensure that all
configurations correctly compile, build, and run. Even when each feature per-
forms well individually, interactions among them are prone to happen and intro-
duce unexpected behavior to the system [2]. Feature interaction is a well-known
problem for configurable systems and enforces the need for test suites covering
all potential feature interactions. Figure 1 presents an example of 3 features of an
illustrative configurable system and all the possibilities of combining the three
features. In addition, Figure 1 shows the A, B, and C configurations submitted
to the test suite. We see that both F1 and F3 features are active in the C con-
figuration and that the test suite reports failure. However, the test suite does



4 Fischer Ferreira

not find failures for configurations A and B. The interaction between the F1
and F3 features causes the feature interaction failure. Above a certain amount
of features, it is infeasible to test all possible feature combinations. This way,
researchers and practitioners have to choose somehow the configurations they
want to test. However, it is not trivial to know which priority configuration.

3 The Proposed Approach

This Ph.D. project aims to provide more effective strategies for testing config-
urable software systems. Therefore, the goal of this research is:

To evaluate testing strategies in the context of testing configurable systems
in the perception of software developers and researchers with expertise in
software testing to propose a new test strategy for configurable systems.

To achieve this goal, we propose a seven step research design (Figure 2). We
discuss each study step as follows.

Fig. 2. Study Steps

Step 1: We performed a Systematic Mapping Study [5] to survey the liter-
ature on test strategies for configurable systems. Our goal was to identify and
analyze tools reported and used in the literature for testing configurable soft-
ware systems. This step provided state-of-the-art testing tools for configurable
systems.

Step 2: We designed a dataset composed of 30 configurable systems with
extensive test suite [6]. The goal was to establish a standardized dataset for
executing and comparing test strategies for configurable systems. As a contribu-
tion, we provided the research community with the first dataset for configurable
systems with an extensive test suite and reported feature interaction failures.

Step 3: We evaluated testing tools in two comparative studies. In the first
study [5], we conducted a comparative study to evaluate two testing tools found
(VarexJ and SPLat). We decided to focus our research on tools that implements
dynamic testing techniques, that is, to test all possible configurations of the
configurable software systems. In the second study, we designed and performed
a comparative empirical study of four state-of-the-art combinatorial interaction
testing tools (IncLing [1], ICPL [11], Chvatal [10], and Random [4]). This strategy
uses techniques to test only a representative subset of all possible configurations.

Step 4: We investigated the dispersion of failures found by the test suites
over the dataset subjects. To support our analysis, we identified classes and
features in each system with at least one failure.

Step 5: We are working on a machine learning algorithm to support the
identification of priority configurations for testing. Based on software metrics,



A Test Strategy for Configurable Software Systems Using Machine Learning 5

a machine learning based strategy provides the capability of understanding the
properties present on the configurable systems (CS), and based on them, it
performs failure detection. Figure 3 presents the steps in the proposed method
divided into two main parts Model Building and Model Application.

Fig. 3. Proposed Strategy

Model Building: The model building demonstrates the training part of our model
using a machine learning algorithm (classifier). Each instance is formed by a set
of metrics (Extraction Metrics) and a label (Extraction Failure) to be predicted
1 or 0 indicating the occurrence or not of the failure, respectively.

Model Application: Using the trained model, it is possible to discover the classes
of the configurable system source code that are prone to failures. Once we dis-
cover these parts of the source code, it is possible to determine the related active
features. Using a SAT Solver, we will assemble all the configurations in which
the features are present. Finally, for these configurations found, we submit the
test suite.

Step 6: We plan to integrate our tool with FeatureIDE. FeatureIDE is an
Eclipse-based IDE that supports all phases of the development of configurable
systems [19].

Step 7: After the development of our testing strategies in Step 6, we can
conduct experiments to evaluate the effectiveness and efficiency of our approach
to finding failure in configurable systems.

The steps 1 to 5 (colored in green in Figure 2) have been completed. We are
currently executing step 6, the development of a testing tool for configurable
systems (colored in yellow in Figure 2). Step 7 (colored in red in Figure 2) is



6 Fischer Ferreira

related to the evaluation of the proposed test strategy and tool. Therefore, this
final step is scheduled to be executed after step 6 is complete.

4 Preliminary Results

In Step 1, we conducted a Systematic Mapping Study [5] on testing tools for con-
figurable systems. We obtained a set of 34 tools. We defined these characteristics
based on previous studies: graphical user interface, prototype, online, plugin, free
for use, open-source, user guide available, solution examples available, supported
language, tested, code level test, feature model check, feature interaction, and
tool Web site. We also compared tools in terms of test strategies. We found the
following test strategies for configurable systems in the analyzed papers. Sound
Testing Techniques is used to test all possible configurations of the configurable
software systems. Combinatorial Interaction Testing uses techniques to test only
a representative subset of all possible configurations.

In Step 2, we first proposed a test-enriched dataset with 30 configurable
software systems. This dataset was created based on a literature review and
further implementation of test suites to improve code coverage. We created 727
test cases for 20 configurable systems and further 90 tests for the three systems
that we extended. Our dataset has a total of 3 182 tests. As means for quality
assurance, we created tests until the have a coverage of 70% and kill at least 40%
of mutants. The final dataset has 30 systems varying in domains, size, variability,
and test suite size. We are confident that this dataset will benefit practitioners
and also be useful for researchers comparing testing approaches and methods.

In Step 3, we observed that VarexJ and SPLat presented distinct results for
efficiency while testing the target systems. VarexJ found more errors than SPLat
for the majority of the target systems. In the second part of our study, we also
conducted a comparative study of tools (IncLing [4], ICPL [11], Chvatal [10],
and Random [4]) to compute recall, precision, and F-measure.

In Step 4, our failure report shows that 254 failures occurred in 151 different
configurations, and that 70 test cases failed. All failures that we found involve
more than one feature, so, we call them feature interaction failures. In addition,
14 out of the 30 systems of our test-enriched dataset have failures. Our analysis
of the dispersion of failures shows that in 11 of the 14 systems that failed,
all failures are in the same class. In other words, feature interaction failures are
normally concentrated in one (or few) class(es) of configurable systems. We hope
that this failure report and these preliminary analyses support practitioners on
understanding the failures that happen in their systems.

5 Related Work

Many approaches have been proposed in the literature to test configurable sys-
tems [15, 17]. Some approaches generate configurations for testing, considering
only the feature model [15]. Other strategies implement a dynamic technique
that explores all reachable configurations from a given test [17]. Our method



A Test Strategy for Configurable Software Systems Using Machine Learning 7

ranks software components identified priority configurations for testing. Some
approaches in the literature that use machine learning techniques to priori-
tize configurations for testing configurable systems consider only the Feature
Model [3]. However, the main difference regarding our approach is that through
our machine learning, we can find the priority points in the source code for
testing, and we discover configurable that manipulate these components of the
source code. Other strategies use software metrics and machine learning to iden-
tify failures in monolithic systems [9]. We propose to use the technique to detect
failures in configurable systems. We expect that this approach is useful for testing
configuration systems with greater efficiency and efficiency than state-of-the-art.

6 Conclusion and Future Work

This paper presents a proposal for a Ph.D. thesis in Computer Science that
focuses on the test strategy for configurable systems. We aim to introduce new
test strategies with machine learning algorithms to support the identification of
priority configurations for testing, in the expectation of proposing a test strategy
with greater effectiveness and efficiency than the tools present in the literature.
We present an overview of the thesis and also discuss some preliminary results
of previous studies. As future work, we intend to conclude the last study steps,
publish the study results as papers for the community, complete the study in
parallel with Step 6 and Step 7, and finish this Ph.D.’s in March 2021 with the
thesis defense.

References

1. Al-Hajjaji, M., Krieter, S., Thüm, T., Lochau, M., Saake, G.: Incling: Ef-
ficient product-line testing using incremental pairwise sampling. In: Pro-
ceedings of the 2016 ACM SIGPLAN International Conference on Gener-
ative Programming: Concepts and Experiences. pp. 144–155. GPCE 2016,
ACM, New York, NY, USA (2016). https://doi.org/10.1145/2993236.2993253,
http://doi.acm.org/10.1145/2993236.2993253

2. Apel, S., Kolesnikov, S., Siegmund, N., Kästner, C., Garvin, B.: Exploring feature
interactions in the wild: The new feature-interaction challenge. In: In 5th Inter-
national Workshop on Feature-Oriented Software Development (FOSD). pp. 1–8
(2013)

3. Devroey, X., Perrouin, G., Cordy, M., Samih, H., Legay, A., Schobbens, P., Hey-
mans, P.: Statistical prioritization for software product line testing: an experience
report. Software & Systems Modeling (SSM) pp. 153–171 (2017)

4. FeatureIDE: featureide tool, https://featureide.github.io/, Accessed 15-nov-2019
5. Ferreira, F., Diniz, J.P., Silva, C., Figueiredo, E.: Testing tools for configurable

software systems: A review-based empirical study. In: Proceedings of the 13th
International Workshop on Variability Modelling of Software-Intensive Systems.
pp. 1–10 (2019)

6. Ferreira, F., Vale, G., Figueiredo, E., Diniz, J.P.: On the proposal and evaluation
of a test-enriched dataset for configurable systems. In: Proceedings of the 14th



8 Fischer Ferreira

International Working Conference on Variability Modelling of Software-Intensive
Systems. pp. 1–10. VAMOS ’20 (2020)

7. Greiler, M., Deursen, A.v., Storey, M.A.: Test confessions: A study of testing prac-
tices for plug-in systems. In: Proceedings of the International Conference on Soft-
ware Engineering. pp. 244–254. IEEE (2012)

8. Halin, A., Nuttinck, A., Acher, M., Devroey, X., Perrouin, G., Baudry, B.: Test
them all, is it worth it? assessing configuration sampling on the jhipster web de-
velopment stack. Empirical Software Engineering (ESE) pp. 674–717 (2019)

9. Jiang, Y., Cuki, B., Menzies, T., Bartlow, N.: Comparing design and code metrics
for software quality prediction. In: Proceedings of the 4th international workshop
on Predictor models in software engineering. pp. 11–18 (2008)

10. Johansen, M.F., Haugen, Ø., Fleurey, F.: Properties of realistic feature models
make combinatorial testing of product lines feasible. In: 14th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS). pp.
638–652 (2011)

11. Johansen, M.F., Haugen, Ø., Fleurey, F., Eldegard, A.G., Syversen, T.: Generat-
ing better partial covering arrays by modeling weights on sub-product lines. In:
International Conference on Model Driven Engineering Languages and Systems.
pp. 269–284. Springer (2012)

12. Krieter, M., T., S.T., Saake, L.M., Al-Hajjaji, G.: Incling: efficient product-line
testing using incremental pairwise sampling. In: 15th Proceedings of the ACM
SIGPLAN International Conference on Generative Programming: Concepts and
Experiences (GPCE). pp. 144–155 (2016)

13. Liebig, J., von Rhein, A., Kästner, C., Apel, S., Dörre, J., Lengauer, C.: Scal-
able analysis of variable software. In: Proceedings of the Foundations of Software
Engineering. pp. 81–91. ACM (2013)

14. Machado, I., McGregor, J., Cavalcanti, Y., Almeida, E.: On strategies for testing
software product lines: A systematic literature review. Information and Software
Technology (IST) pp. 1183 – 1199 (2014)

15. Medeiros, F., Kästner, C., Ribeiro, M., Gheyi, R., Apel, S.: A comparison of 10
sampling algorithms for configurable systems. In: Proceedings of the International
Conference on Software Engineering. pp. 643–654. ACM (2016)

16. Pohl, K., Metzger, A.: Software product line testing. Information and Software
Technology (IST) pp. 78–81 (2006)

17. Souto, S., d’Amorim, M., Gheyi, R.: Balancing soundness and efficiency for prac-
tical testing of configurable systems. In: In 39th Proceedings of the International
Conference on Software Engineering (ICSE). pp. 632–642 (2017)

18. Svahnberg, M., Van Gurp, J., Bosch, J.: A taxonomy of variability realization
techniques. Software: Practice and experience (SPE) pp. 705–754 (2005)

19. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Featureide:
An extensible framework for feature-oriented software development. Science of
Computer Programming (SCP) pp. 70–85 (2014)


