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Abstract. Technological advancements, updates to legal regulations,
and emerging industry standards have immersed the IT industry in a
never-ending cycle were RESTFul APIs are required to keep up with the
latest trends. IoT developers often hard-code the API invocation in the
clients (i.e., IoT devices); this makes the continuous upgrade/delivery
of new API versions laborious or even impossible. In this article, we
introduce an API Adaptation approach that addresses the problem by
transforming messages exchanged between devices and the API server.
In our approach, compatibility is achieved by adjusting the information
after it leaves the source and before it reaches the target destination. The
evaluation over a large/real API offers initial insights into the feasibility
of our approach.
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1 Introduction

With the latest technological advancements and the ever increasing number of
devices connected to the Internet, humanity has been able to gather data and
integrate electronic devices with the physical world like never before. All of this
has enabled a technological trend known as the Internet of Things (IoT). The
Internet of Things is based on machine to machine communication, cloud com-
puting and networks of sensors [2]. This integration of systems has the possibility
of making every device smart by combining all gathered data with the power of
cloud computing and machine learning.

An IoT architecture consists of three tiers[1]: IoT devices, connectivity, and
services. The connectivity tier typically has gateway devices responsible for in-
terfacing directly with the services and providing an API (Application Program
Interface) (e.g., RESTFul) to IoT devices. As developers modify services’ APIs,
these may become unresponsive as the data sent from the IoT devices may no
longer be consumable. This challenge can be expressed as the need of maintain-
ing compatibility between constantly developed and improved APIs and their
continuously increasing number of clients.

Keeping new and legacy API Clients compatible with the latest changes of an
API is a complex process. The evolution and adaptation of APIs for Web-based
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software have been studied in recent years [15] and some solutions have been
proposed, e.g., Software Defined Networks (SDN). However, when it comes to
evolution of APIs for IoT systems, such solutions may not be fully applicable
because client devices may: (1) have very few resources which constrain their
ability to properly adapt to changes in the API or (2) either be hard-coded
or hard to access, which makes continuous upgrade/delivery laborious or even
impossible.

These factors represent a challenge that deserves attention and research.
To reach a more appropriate solution, adhesion to modern trends in software
engineering such as continuous integration and DevOps is required. In this paper,
we propose an approach in early stages of research that suggests a revisited
perspective of SDN applicable to IoT. This work is aligned with the H2020 2018-
2020 work package; specifically with the activities ICT-15-2019-2020 [5] about
engineering methods for cyber-physical systems of systems (CPSoS) and ICT-
16-2018 about software engineering methods and tools applicable across domains
such as IoT and Cloud[6]. This work contributes initial insights to the feasibility
of software engineering practices that result in improvements in maintenance for
API-driven IoT devices.

Our approach (see Section 4) focuses on addressing compatibility between an
API and its clients1 by adapting messages as they leave the source to make them
understandable by the target destination by applying successive transformations
to the exchanged data. The approach can handle input and output interface
changes of individual APIs, that correspond to syntactic changes, thus changes
in the semantics of the APIs are out of the scope of this paper. We adapt
existing strategies in the IoT research landscape. The rest of this document is
organized as follows: Section 2 presents related work. Section 3 describes an API
evolution scenario to provide more context for the work presented here. Section
5 summarizes the results obtained after testing the proposed strategy over a
real API in production environment. Section 6 contains thoughts and further
considerations for the adaptation approach outlined in this document.

2 Related Work

There are several papers in the areas of API adaptation (e.g., [16, 13, 12, 10,
18]), business process adaptation (e.g., [17]), web service composition adaptation
for changing workflow/business processes (e.g., [9, 4]). In this paper, we took
inspiration from the algorithms found in those works and adapt them for APIs
in the IoT domain. Whereas most of the approaches found in the literature tackle
the challenge of adapting Web/mobile/third party systems to evolving software
artifacts, we found only two approaches addressing the API compatibility issues
for IoT clients. The next paragraphs briefly describe these two approaches and
their limitations, and a comparison ends the section.

1 API clients and IoT devices will be used as interchangeable names in the remaining
sections
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Software Defined Networking (SDN) [15]: This approach proposes a segmen-
tation of concerns between how the API is navigated and what data is passed
between calls to the API. In the same manner, the API is configured by setting
available navigation paths in a programmatic sense instead of the traditional
resource path in a REST API [14]. Under this approach, a software Petri Net
is configured with the API Paths (represented as nodes) and the client is redi-
rected across them as required. To do this, the client incorporates two software
components: a Client Oracle that knows how the API is traversed and a Client
Agent that knows what data is to be passed to the current node indicated by the
navigation. In this way the evolution of the API is managed by sharing naviga-
tion and API data changes with the client, which in turn updates the definitions
of its Oracle and Agent. Although this approach offers flexibility and guarantees
that clients are updated with the changes deployed in the API, it represents a
major shift away from the RESTful API standard. Also, this approach means
that existing clients should be modified to include the Oracle and Agent, which
is difficult or even impossible in constrained IoT devices.

Multi-Versioning [8]: This approach focuses on keeping multiple versions of
the same API published and available at the same time. This way, compatibil-
ity between all clients with the API is guaranteed as each client will be able
to consume their corresponding version. However, this approach does represent
major challenges in terms of proper resource allocation as it requires additional
servers and platform resources for each deployed API version. Additionally, this
approach also implies that corrections and upgrades to any API likely need to be
propagated to other versions, meaning that additional maintenance costs would
be incurred.

The improvements on maintainability offered by SDN-based approaches (in-
cluding our own) cause a degradation on performance. In multi-versioning ap-
proaches is the other way around. In certain contexts (e.g., safety-critical sys-
tems) this degradation cannot be tolerated. Therefore, both approaches are valid
and can be seen as complementary to satisfy the requirements from a broad va-
riety of IoT devices. All the other approaches focus on helping the developers
change their source code to make applications compatible with a new version of
an API, which in the context of IoT where the code that makes use of the API
is on a device, changing that source code is something difficult or in some cases
impossible to achieve.

3 Case Study

The case study consists of a residential smart-home system that monitors and
alerts house residents about fire situations. The system works by continuously
reading data from a fire detection device, detecting anomalous measurements,
and warning stakeholders of possibly dangerous situations.

The fire alarm device is composed of a temperature sensor and a flame sensor.
The main purpose is to monitor the room temperature and detect the presence
of flames. The temperature and flame sensors monitor their associated physical
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variables. A detection of fire sends an alert to the corresponding authorities
through a fire alarm service. In addition to this notification, the fire alarm service
also announces the event locally with a visual or sound alarm depending on the
location and activities of the residents. The target API is assumed to be Open
API 3.0.0 compliant.

The case study API is composed of a single fire report resource published on
an HTTP server. This resource represents the interface with the fire department
service and exposes two operations: a GET and a POST request. The GET op-
eration returns an array of JSON objects representing a fire report. The POST
operation is used to deliver a JSON object that represents a fire sensor data
report and receives, as response, a JSON object that describes the fire depart-
ment that will attend the emergency and their estimated time of arrival to the
house. The object diagram in Fig. 1 depicts two overlapped versions of the fire
alarm service’s API. This case study is introduced to add additional context to
the proposal discussed in the following section.

Fig. 1. Object diagram representing an excerpt of the fire alarm service API

4 The API Adapter

Keeping in mind the reasons for continuous/mandatory API evolution and the
hurdles that hinder compatibility between APIs and clients, the API Adapta-
tion approach was designed with the following considerations as guidelines: (1)
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Since the technological gap between legacy and modern API clients will broaden
throughout the upcoming years, the solution should cover the widest range of
devices consuming the target RESTful API. (2) Despite the latest advances,
IoT devices still have a low amount of resources when compared to those of API
servers, thus being constrained devices. The solution should compromise as lit-
tle resources as possible from API clients. Hence, the solution is designed as an
independent component with no ties to any of the IoT devices. (3) The solution
should keep the API version management as simple as possible without addi-
tional complexity. Therefore, only the newest version of the target API should
be required.

The solution incorporates a middleware, which will be referred to as API
Adapter, focused on keeping all client interactions compatible with the most
recent version of the published API, as well as all responses delivered by the
API compatible with the clients’ expectations. The overall strategy by which
compatibility between different versions of the API is obtained is divided into two
phases: The Conflict Identification Phase and the Message Adaptation Phase.

The Conflict Identification Phase takes place whenever a new API version
is deployed. This phase identifies the differences between the source version of
the API and the new target version; it creates the message adaptation trans-
formations required to make both versions (source and target) compatible. This
part of the strategy is summarized in the following steps: (1) Load source and
target API definitions. (2) Compare the source API version against the target
and distill all differences as atomic differentials. (3) Process each API differential
and map it against its corresponding category within a previously established
taxonomy. The category indicates which service performs the adaptation. (4)
Format this information as a request to an Adaptation Service.

The second phase is the Message Adaptation Phase and it occurs whenever
a message is dispatched from an API client to consume a resource in the API
server. This side of the approach is briefly described in the list up next: (1)
Receive a request message from any API client. (2) Find the client’s expected
API version. (3) Apply successive transformations to the messages to make the
request from the client compatible with the newest API version. (4) Transform
the response from the API server back into the client’s expected API version via
successive calls to Adaptation Services. The architecture of the API Adapter is
depicted in Fig. 2. A description of its components follows.

4.1 API Version Manager

This component ensures compatibility of any supplied API with the OpenApi
3.0.0 specification [11]. Once a new API version has been validated as compliant
with the standard, it is submitted to the Differential Comparator to evaluate
the changes in relation with the former API version.
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Fig. 2. Component diagram of the API Adapter

4.2 API Differential Comparator

This component compares two different version specifications of the same API.
Any differences found are expressed as a set of small differentials, describing
whether the changes are modifications to existing elements, additions of new
elements, or deletions of existing elements.

The following list describes the steps and considerations followed by the Dif-
ferential Comparator to evaluate two versions of the API. (1) Each API version
is loaded into its own Abstract Syntax Tree (AST) structure [3].(2) The two
ASTs are compared against each other in search of mismatching branches. (3)
Each mismatching branch is expressed as an API Differential and is described
with the following fields: Element Path: This is the section of the AST branch
where both versions of the API are similar. API Element: This is the last node
in the Element Path, which is the one undergoing the change. Differential Type:
This field defines whether the new version of the API is either a modification of
existing data, an addition of new data, or a deletion of data. Differential Phase:
This field defines whether the new version of the API is modifying the API’s
server request or its response. Source Element Value: This is a representation of
the data stored in the nodes directly below the Element Path in the tree of the
source API. (f)New Element Value: This is a representation of the data stored
in the nodes directly below the Element Path in the tree of the target API.

To further illustrate how differentials are processed, suppose that a change
in the new version of the case study API is introduced. In this example, the
schema for the POST request is changed from a JSON object to an array of
items with no specific structure. In Fig. 1 the two versions are overlapped; the
common elements between APIs are colored in white, elements from the source
API are colored light gray and the elements from the target API are colored
dark gray. White colored objects represent the Element Path. As seen in the
figure, the change takes place under the request node, which is the API Dif-
ferential Phase. This means that the adaptation should take place when the
client’s request is received in the system. The lowest node in the Element Path
represents the API Element of the path up to which the two APIs are simi-
lar. The light gray colored element represents the Source Element Value in
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the source API. The dark gray colored element represents the New Element
Value in the target API. The striked line over the property object in the schema
represents the Differential Type, which is a modification.

4.3 API Conflict Solver

This component is responsible for processing API Differentials delivered by the
Differential Comparator and mapping them into properly structured adaptation
requests to services in the Adaptation Chain (see Section 4.5).

In order to match API Differentials against Adaptation Services, the Conflict
Solver relies on a Taxonomy of Changes [19]. Table 1 summarizes the taxonomy.
Each change has a type, an element undergoing the change and an Adaptation
Service. The latter transforms the changed element into compatible data.

Table 1. Differential Taxonomy

Name Adaptation Service

Modify Property Type Caster

Modify Property Name Property. Mapper

Add Property Property Mapper

Remove Property Property Mapper

Modify Schema Type Schema Parser

Modify Content Type Content Mapper

Modify Status Code Status Mapper

Add Status Code Status Mapper

Remove Status Code Status Mapper

The process by which an API Differential is mapped into an Adaptation
Service request is summarized in the following steps. (1) Match the incoming
API Element Type against the taxonomy Element. (2) Match the incoming API
Differential Type against the taxonomy Differential Type. (3) Match the incom-
ing API Differential Phase against the taxonomy Differential Phase. (4) With
all the elements matches, find the proper Adaptation Service and register the
proper call to it as a link of the adaptation chain.

4.4 API Adaptation Mediator

This component is the interface between the API and all its clients. It is re-
sponsible for receiving all incoming API client requests, orchestrating calls to
Adaptation Services and exchanging the transformed messages between API
clients and API servers.
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4.5 API Adaptation Chain

This component is responsible for supplying the Adaptation Services for the API
Adaptation Mediator with the purpose of applying successive transformations to
messages exchanged between the API Server and its clients.

Each Adaptation Service is focused on providing a specialized transformation
which is determined by how an API Differential is matched against a taxonomy
item by the Conflict Solver. Since each API Differential is conceived as the
smallest, most representative change applied to an API Element from an API
Version to the next, the Adaptation Services are designed to be consumed fol-
lowing a Chain of Responsibility pattern [7] similar to the behavior described in
Fig. 3, where the Adaptation Mediator calls a Caster Adaptation service. This
adaptation should take place before calling the POST method since the incom-
ing JSON object has to be transformed into an array of items. The latter may
require casting of data types.

Fig. 3. Sequence diagram representing an adaptation flow for the case study

5 Preliminary Results

The purpose was to test the accuracy of the API Adapter at identifying changes
between API’s versions. First, we built a prototype of the API Adapter. We
provided the API Adapter with two versions of a large API, where the last
version included at least three occurrences of each type of change reported in
our Change Taxonomy. Then, we manually compared the output from the API
Adapter against a table of expected results.

Some characteristics of the API under evaluation are: 23 Resources, 1-4
HTTP Verbs per Resource, 2-4 Status Codes per Response, 1 Application Con-
tent, 0-2 Nested Objects, 1-14 Properties per Object. Further elements that
describe the complexity of the API follow: Each of the 23 resources exposes on
average 2.5 http verbs (GET, POST, PUT, DELETE). Each operation available
in a resource has on average 2.5 status codes (200, 400, 401, 403, 500). Only the
application/json content is considered throughout the API. A resource’s schema
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may have a nested object definition which, in turn, may wrap up to one object
as a property. Resource schema objects have on average 6 properties; meaning
that some may have a minimum of 1 property and a maximum of 14.

The API adapter is 100% accurate when it comes to determining whether
a new element was added or an existing element was removed. Whilst the API
comparison is always able to identify element modifications in leafs of an API
AST representation, it is only 66.66% accurate when identifying modifications in
non-leaf nodes. The reason for this lack of precision is explained by an unexpected
behavior in the differential comparator. In order to speed up the process, the
current implementation navigates in depth the branches of the AST until a
change is detected. As a consequence, operations like modifying the property
name of elements are not always identified as such; being incorrectly marked as
an addition of a new element or a removal of an existing one. To work around this
issue, before marking a source element as changed, the algorithm should compare
the tree nodes hanging under such an element with those of the target element.
If the tree nodes are equal, we are facing an element whose internal properties
have been altered (e.g., property renaming). Otherwise, we deal with an element
whose pendent elements have underwent a set of modifications. Hence, we can
decrease the risk of wrongly identifying additions and deletions when, actually,
a modification takes place.

6 Conclusions and Future Work

Throughout the course of this research we identified that our API Adaptation
approach relies heavily on determining the spots where changes took place in
order to properly apply all required adaptations. Future efforts will be focused on
adding efficient recursive calls to the existing algorithm to improve its accuracy.

The use of an API Change Taxonomy proved to be a valuable guideline to set
out the scope of the adaptation strategy. Further work around this should extend
the Change Taxonomy to include all elements of an Open API specification that
may undergo changes.

Since the API Adapter is an additional layer between the IoT devices and
the API server, an additional processing overhead appears; this increases based
on the subsequent adaptations applied to the message. Parallelism and caching
strategies can be evaluated to reduce this overhead. In addition, one could in-
tegrate SDN-based approaches and multi-versioning in the same solution along
with a smart mechanism to choose the most appropriate option to precisely meet
the needs of a given IoT device.

Furthermore, as future work, there needs to be an experimentation that de-
termines the cost of maintaining this adaptation service for a prolonged period of
time. We must also compare the approach to find advantages and disadvantages
with other approaches, like pushing firmware updates to the IoT devices.

Finally, during the evaluation, we observed that a large amount of adapta-
tions are registered in the system every time the process is executed, some of
these adaptations even being redundant. Because of this, future work should
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include an additional process that compares the target API against all previ-
ous registered versions to reduce the amount of adaptations each previous API
version would need to match the target.

References

1. Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S.,
Meissner, S.: Enabling Things to Talk: Designing IoT Solutions with the IoT Ar-
chitectural Reference Model. Springer (2016)

2. Burrus, D.: The internet of things is far bigger than anyone realizes (11 2014),
https://www.wired.com/insights/2014/11/the-internet-of-things-bigger/

3. Carnie, A.: Syntax: A Generative Introduction. Wiley-Blackwell (2013)

4. Chafle, G., Dasgupta, K., Kumar, A., Mittal, S., Srivastava, B.: Adaptation in
web service composition and execution. In: 2006 IEEE International Conference
on Web Services (ICWS’06). pp. 549–557. IEEE (2006)

5. Commission, E.: ICT-15-2019-2020. http://ec.europa.eu/research/

participants/portal/desktop/en/opportunities/h2020/topics/

ict-15-2019-2020.html, accessed June 11, 2018

6. Commission, E.: ICT-16-2018. http://ec.europa.eu/research/participants/

portal/desktop/en/opportunities/h2020/topics/ict-16-2018.html, accessed
June 11, 2018

7. Gamma, E.: Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series, Addison-Wesley (1994)

8. H. T. Tran, H.B., Kuppili, R.: A notification management architecture for service
co-evolution in the internet of things. IEEE 10th International Symposium on the
Maintenance and Evolution of Service Oriented and Cloud-Based Environments
pp. 9–15 (2016)

9. He, Q., Yan, J., Jin, H., Yang, Y.: Adaptation of web service composition based on
workflow patterns. In: International Conference on Service-Oriented Computing.
pp. 22–37. Springer (2008)

10. Henkel, J., Diwan, A.: Catchup! capturing and replaying refactorings to support
api evolution. Proceedings of the 27th International Conference on Software Engi-
neering 27, 274 – 283 (2005)

11. Initiative, O.A.: Open api (6 2001), https://www.openapis.org/

12. Kim, M., Notkin, D.: Discovering and representing systematic code changes. In:
2009 IEEE 31st International Conference on Software Engineering. pp. 309–319.
IEEE (2009)

13. Kim, M., Notkin, D., Grossman, D.: Automatic inference of structural changes for
matching across program versions. In: 29th International Conference on Software
Engineering (ICSE’07). pp. 333–343. IEEE (2007)

14. L. Li, W. Chou, W.Z.: Design patterns and extensibility of rest api for networking
applications. IEEE Transactions On Network And Service Management 13(1),
154–167 (5 2016)

15. L. Li L., W.C.: Compatibility checking of rest api based on coloured petri net.
Lecture Notes in Business Information Processing (246), 25–43 (3 2016)

16. Nguyen, H.A., Nguyen, T.T., Wilson Jr, G., Nguyen, A.T., Kim, M., Nguyen, T.N.:
A graph-based approach to api usage adaptation. ACM Sigplan Notices 45(10),
302–321 (2010)



Managing Evolution of API-driven IoT Devices through Adaptation Chains 11

17. Oberhauser, R.: A hypermedia-driven approach for adapting processes via adap-
tation processes. In: 2015 8th International Conference on Advanced Software En-
gineering & Its Applications (ASEA). pp. 73–80. IEEE (2015)

18. Perkins, J.: Automatically generating refactorings to support api evolution. ACM
SIGSOFT Software Engineering Notes 31, 111 – 114 (2006)

19. Sanctis, M.D., Geihs, K.: Distributed service co-evolution based on domain objects.
Lecture Notes in Computer Science 9586, 48–63 (2016)


