
Commit Classification using Natural Language
Processing: Experiments over Labeled Datasets

Geanderson E. dos Santos[0000−0002−7571−6578] and
Eduardo Figueiredo[0000−0002−6004−2718]

Federal University of Minas Gerais, Belo Horizonte MG 31270-901, Brazil

Abstract. Software commits play an important role in collaborative
software development. A commit allows developers to collaboratively
contribute to open-source software projects. Previous studies show that
developers spend a lot of time in identifying and prioritizing critical
issues and respective commits. For this reason, understanding what a
software commit is trying to solve in the project is very important. In
this context, commit classification could help managers to plan and allo-
cate resources in advance for the software project. Despite its relevance,
we still lack accurate models to support automated classification of com-
mits into relevant categories. In this work, we conduct an empirical study
to evaluate commit classification techniques using the commit message
given by developers as input. After an ad-hoc literature review, we cre-
ated a dataset based on labeled data from different works found in the
literature. Second, we compared five Machine Learning (ML) state-or-art
algorithms seeking a reliable baseline model. Finally, we applied Natural
Language Processing (NLP) to a novel ML model aiming at improving
results compared to the baseline models. Our findings show that the new
NLP-based model outperforms the random baseline models by a relevant
rate, achieving 91% of F-measure for the commit classification task.

Keywords: software commit classification · natural language processing
· machine learning.

1 Introduction

Software commits play an important role in the Version Control System (VCS)
allowing practitioners to create collaborative source code repositories [7, 9, 22,
23]. These repositories can be shared with the software community, and many
developers around the world contribute to important open source projects. The
main representative of these VCS platforms is the well known GitHub1 Web
system, which is responsible for storing millions of projects from companies,
research groups, and independent developers. The contributors to these systems
have an easy-to-use architecture for introducing new features, fixing bugs, testing
existing code, and many other capabilities [7, 8]. On the other hand, dealing with
online repositories may introduce serious bugs that may not have been properly

1 https://github.com/



2 G.E. Santos and E. Figueiredo

tested [7, 13, 15, 16]. One approach to deal with the probability of introducing
bugs into the project is, for instance, to understand what the commit is doing in
the source code. Commit classification can, therefore, support the estimation and
planning of bug fixes [5, 10, 20] among other uses. In fact, different approaches
for commit classification have been studied in the literature [2, 7, 10, 16, 20].

In this paper, we first evaluate five Machine Learning (ML) algorithms used
for commit classification aiming to predict the nature of changes. These ML
algorithms are used as baseline models and rely on the text provided by the
developer who committed the code. One of the advantages of classifying soft-
ware commits is that it may help practitioners to plan and allocate resources
to the project issues. Therefore, planning the software may reduce uncertainty
and improve the cost-effectiveness of tasks related to the project development.
To classify a software commit, it is necessary to look at the possible inputs a
developer may provide in the commit log.

There is no consensus regarding the different types of classification to which a
commit refers. Therefore, after an ad-hoc literature review, we collected labeled
datasets and created a unified dataset by classifying commits into five cate-
gories: corrective, features, non-functional, perfective and unknown. We adopted
the definition of Levin and Yehudai [13] for three of the categories: corrective
related to fault fixing, perfective based on system improvements, and adaptive
corresponding to new features introduction. We also used the definition of Hindle
et al. [9], where non-functional is associated with documents and non-functional
requirements. In addition, the category unknown is able to aggregate files that
are created by VSC systems. For instance, when a merge is executed automati-
cally in GitHub, some files are committed with generic descriptions. Finally, we
propose a novel model able to classify commits. Therefore, the final goal of this
paper can be stated as follows.

Propose and evaluate a model based on Natural Language Processing
(NLP) to classify software commits.

To provide a mean for comparison between the novel NLP model and baseline
models from the literature, we apply all models to a unified dataset of labeled
commits. Other works are available for comparison [2, 10]. However, state-of-
art work has different categories for software commit classification. For instance,
there is a classification of commits in only three categories related to maintenance
activities: corrective, adaptive, and perfective [14]. In such work, the authors
were able to achieve an accuracy of around 76% with three categories [14]. These
labels are very limited for our purpose. So, we opt for a more deep study of the
categories, where five classes of commits are taken into account [8]. Using the
same five labels adopted for the commit classification, previous work was able
to achieve approximately 65% of accuracy from different models [8]. The NLP
model we propose, however, was able to achieve expressive results in the labeled
dataset, achieving 91% of F-measure for the commit classification problem.



Title Suppressed Due to Excessive Length 3

This paper is organized as follows. Section 2 presents the related work. The
experimental design and its main phases are discussed in Section 3. The study is
divided into 4 steps (i) ad-hoc literature review, (ii) collecting data from labeled
datasets, (iii) experiments with the baseline algorithms, and (iv) experiments
with a new NLP model to classify software commits. In Section 4, we discuss
the main results of this paper. Finally, Section 5 details the threats to validity
involved in this research, and Section 6 concludes this paper with insights for
future explorations on software commit classification.

2 Background and Related Work

In this section, we present literature work related to the task of software commit
classification. The section is divided as follows. We introduce the problem of
commit classification (Section 2.1). Next, we discuss in Section 2.2 the tools and
algorithms proposed in the literature.

2.1 Commit Classification

The simplest kind of classification is to identify some unknown object as a mem-
ber of a known class of objects. Classification is a computationally hard problem,
and it is the subject of study in different Computer Science areas. One of the
many forms of classifying software commits is through labels. The central idea of
the labeling mechanism allows users to decide which labels they think are more
applicable to the context of their content, in contrast to other classification mech-
anisms. Many authors have studied how labels are used in these systems [3, 6].
The use of labels has also been extended to Web-based code hosting platforms
where tools like issue-trackers (as the popular Bugzilla) offer this functionality.

Previous studies have attempted to propose accurate models to classify soft-
ware commits. Most works are based on the commit messages, using text analy-
sis, such as word frequency approaches to find specific keywords [8, 9, 13, 17, 22].
For instance, Mockus and Votta [17] have proposed a commit comment based
model to classify a software commit. The authors reported an average accu-
racy of approximately 60% within the scope of a single project (a very large
software system known as Firefox with millions of lines of code). In a similar
approach, Hindle and colleagues [9] proposed to classify software commits by
training Machine Learners on features extracted from the commit metadata,
such as the word distribution of a commit message, commit author, and mod-
ules modified by the developers. The authors validated the model through 10-fold
cross-validation and reported accuracies above 50%. They also pointed out that
the identity of the author of a commit provided a lot of information about the
subject of a commit, almost as much as the words of the commit message. Fur-
thermore, the authors propose the identification of six categories for commit
classification: “perfective”, “merge”, “adaptive”, “feature addition”, “non func-
tional”, and “preventive” [20]. Compared to previous work, our proposed model
achieved higher accuracy than these projects in a unified labeled dataset and we
used several random models as baselines for comparison.



4 G.E. Santos and E. Figueiredo

2.2 Tools and Algorithms for Commit Classification

Rosen and colleagues [20] developed a platform to automatically identifies risky
(i.e., bug-inducing) commits and built a prediction model to assess the likeli-
hood of a recent commit introducing a bug in future. The platform is known as
Commit Guru and allows users to download the data for any project that is pro-
cessed by the system. Several large open source projects have been successfully
processed using Commit Guru. Besides this tool, other authors [10] present a
platform that generates a set of visualizations to facilitate the analysis of issues
in a project depending on their label-based categorization. The tool is named
GitHub label analyzer (GiLa). They argue the visualizations are useful to see
the most popular labels and their respective relationships in a project. The tool
also allows identifying the most active community members for those labels and
a comparison of the typical issue evolution for each label category. In a different
work, Levin and Yehudai [13] built a designated repository mining tool that was
used to create a metric dataset. The tool is responsible for processing nearly
1,000 highly popular open-source GitHub repositories, consisting of 147 million
lines of code and maintained by over 30,000 developers. The computed metrics
were then employed to predict the maintenance activity profiles identified in
previous works. The authors show how their results may help project managers
to detect anomalies in the software development process and to build better
development teams.

A previous work [5] discussed the problem of identifying particular changes
that occur across several versions of a program. The authors present a plu-
gin known as Change Distilling, a tree differentiation algorithm for fine-grained
source code change extraction. Similarly, Casalnuovo and others [2] proposed
a tool known as GitcProc, a lightweight tool based on regular expressions and
source code blocks, which downloads projects and extracts their project history
including fine-grained source code information and development time bug fixes.
These systems present interesting features for the software commit classification.
However, both Commit Guru and GiLa seem to be in maintenance stage or have
been closed by their authors [10, 20]. While Change Distilling and GitcProc are
still available, Change Distilling is limited to Java IDE Eclipse. As we do not
want to face the same availability problem, we have created a replication repos-
itory with all our data and tooling publicly available on GitHub2.

3 Study Setup

In this section, we present the research questions that guided our study (Section
3.1). Section 3.2 presents the study phases we followed in this work. Section
3.3 presents the dataset used to evaluate all models for the software commit
classification problem. Finally, we discuss in Section 3.4 the baselines models
applied in this research.

2 https://github.com/gesteves91/fasttext-commit-classification



Title Suppressed Due to Excessive Length 5

3.1 Research Questions

Our experiments aim to answer the following research questions concerning the
software commit classification problem using a unified labeled dataset.

RQ1: Are random models effective in the commit classification task?

RQ2: Can we improve the effectiveness of random models for the commit clas-
sification task by using natural language processing?

3.2 Study Phases

To answer RQ1 and RQ2, we designed and conducted an empirical study com-
posed of four phases. These phases aim to achieve the final goal of proposing and
evaluating a model based on the Natural Language Processing (NLP) to classify
commit activities. The phases are described as follows.

Phase 1 Literature Review - An ad-hoc literature review was performed to find
related work about software commit classification and identify the state-of-art
on labeled datasets, whose features are replicated in this work. Other research
projects and tools were analyzed to explore the many possibilities that the soft-
ware commit classification problem had to offer for our study. At the end of
this phase, we were able not only to find important research projects about the
subject, but also to set the target in terms of the objective of the study and the
datasets used in the experimental phase of this research.

Phase 2 Collecting Data from Labeled Datasets - During the literature review,
a search was conducted to find labeled datasets publicly available on the inter-
net for researches to freely test and explore new approaches for software commit
classification. We aim to test these datasets against a Natural Language Pro-
cessing (NLP) algorithm in order to investigate its effectiveness for the target
problem. This phase was also responsible for joining the many different datasets
into one unified dataset to be used in the experimentation phase.

Phase 3 Experiments with the Baseline Models - In this phase, the experiments
and their respective analyses were performed in terms of the selected baseline
models. Then, for each algorithm, a cross-validation method was used to test
the models [12]. The training dataset was evaluated using repeated 5-fold cross-
validation with 5 repetitions, i.e., the 5-fold cross-validation was performed 5
times and the average F-measure metric was reported. Note that the test dataset
did not take part in the training process, which provides a more realistic evalu-
ation of the problem. It also prevents the study for overfitting and leading us to
incorrect conclusions about the data distribution. All models and their evalua-
tions were implemented in the Python language, with the support of the largely
used Scikit-learn package [18]. This phase aims to answer our first research ques-
tion (RQ1).



6 G.E. Santos and E. Figueiredo

Phase 4 Experiments with a new NLP Model - In this last phase, the ex-
periments were performed with a novel NLP model. The average F-measure is
reported after a grid search of the hyper-parameters. This phase aimed at com-
paring results from the proposed NLP model against the baseline models in
terms of the target evaluation metric (F-measure). This last phase targets our
second research question (RQ2).

To exemplify the experiments described in Phases 3 and 4. Figure 1 illustrates
three stages applied to generate the baseline and the NLP model. In Stage 1,
we vectorize the words contained in the commit messages using the TF-IDF
algorithm. Then, in Stage 2, we tested the performance of five baseline models
to classify software commits. Finally, in the last stage, we build a new NLP
model based on the fastText algorithm [1] to classify software commit expecting
better results than the baseline models and the current literature.

Fig. 1. Phases to create the NLP model to classify software commits.

3.3 Dataset

The dataset collection was gathered from three different sources. These sources
are publicly available on the Web under their respective publications [14, 16, 21].
All the provided data were properly labeled using the expertise of experienced
developers [14, 16, 21]. Furthermore, the respective authors asked the developers
to label their own commits in order to avoid imprecise labels. In total, 5,631
commits were manually classified and unified in our final dataset. The commits
are classified following the maintenance activities [14] and the respective authors
have applied other methods, such as classifying the similar commits [9].

In order to keep a common version between the datasets and maintaining
the nature of the changes, we opted for relabeling the “adaptive” label as “fea-
tures” since the literature do not agree in this category [9, 14]. Then, the labels
we used are “corrective”, “features”, “non functional”, “perfective”, and “un-
known”. Note that even though two of the datasets followed the same classifica-
tion we used [9], they also classify commits in terms of “merge” and “preventive”



Title Suppressed Due to Excessive Length 7

labels. Ignoring these classifications, such as “merge” label [11], is common in
the literature. In fact, Version Control Systems (VCS) often provide automatic
commit messages for merges, such as “merge commits X and Y”, which makes
their classification pointless.

Figure 2 shows the distribution of labels in the final dataset. The classes
(i.e., labels) are imbalanced in the unified dataset. The “corrective” label is
significantly more common than the remaining labels. Nevertheless, the “un-
known” label has the lowest rate compared to the other classes. The imbalanced
classes are not necessarily a problem for this study as it is discussed in the fol-
lowing sections. Evaluating the F-measure and the correct application of the
cross-validation process is enough to deal with the imbalanced data [4].

Fig. 2. Distribution of labels x commit messages.

3.4 Baseline and Measures

We considered five machine learning algorithms that are often used for text
classification prediction to provide baseline for the comparison [14, 21]: Random
Forest (RF), Linear SVC, Multinomial Naive Bayes (NB), Logistic Regression
(LR) and Decision Tree (CART). We then evaluate the effectiveness of the con-
sidered models using standard F-measure [4].

F-measure is highly necessary for the commit classification problem because,
as observed in Figure 2, the labels are not equally distributed in the dataset.
In other words, the dataset is fundamentally imbalanced and, then, considering
only the accuracy would give imprecise conclusions about the models. F-measure,
however, is defined as the weighted harmonic mean of the precision and recall



8 G.E. Santos and E. Figueiredo

of the test. Therefore, it considers both precision and recall in its fundamental
calculation.

4 Results and Discussion

This section presents our results and discusses the main findings of this study,
by answering our two research questions (RQ1 and RQ2).

4.1 Random Models for Commit Classification

The first study we conducted is devoted to answering research question RQ1:
“Are random models effective in the commit classification task?”. To answer
this question, we first create a word vector to represent the sentences in the
commit message. The commit message is represented as a string when we access
the raw dataset. The word vector representation is responsible for creating the
matrix that serves as input for the baseline models. To create the word represen-
tation, we opt for the technique known as Term Frequency - Inverse Document
Frequency (TF-IDF) [19, 24]. This method calculates values for each word in
a document through an inverse proportion of the frequency of the word in a
particular document to the percentage of documents the word appears in. For
this reason, words with high TF-IDF numbers imply a strong relationship with
the document they appear in, suggesting that if a word appears in the query,
the document could be of interest to the user. This technique seemed to be a
reasonable option to generate the word vectors as discussed in the literature [19,
24].

TF-IDF algorithm can output the N-gram relationship between the words
in the corpus. For instance, if the commit message is “my code has a bug”,
the unigram (or 1-gram where N=1) is “my”, “code”, “has’, “a”, “bug”. On
the other hand, the bigram (or 2-gram where N=2) outputs the following result
for the same sentence: “my code”, “code has”, “has a’, “a bug” [19]. Table 1
shows the most frequent unigram and bigram outputted by TF-IDF based on
the dataset described in Section 3.3. The results generated by TF-IDF unigrams
and bigrams are used for all baseline models of this research. As an example
in Table 1, the TF-IDF algorithm found out that the most correlated words to
the “corrective” label are “bug” and “fix” for the unigram and “new ui” and
“fix bug” for the bigrams. The same structure is followed to output the most
correlated words for the remaining labels. The algorithm seemed to find good
relationships between the labels and the words. Therefore, the TF-IDF vectors
were used as input for the machine learning algorithms.

After generating the word vector representation of the commit messages,
we applied random models to test their effectiveness in classifying commits. As
explained in Section 3.4, we choose five ML algorithms for this task: Random
Forest, Linear SVC, Multinomial Naive Bayes, Logistic Regression (LR) and De-
cision Tree (CART) [16, 14]. To select a metric to evaluate effectiveness of models



Title Suppressed Due to Excessive Length 9

Table 1. Most related 2 words Unigrams and Bigrams.

Label Unigram Bigram

Corrrective bug new ui
fix fix bug

Features features new features
feature add support

Perfective design package structure
structure structure refactoring

Non-Functional improve improve performance
performance improved performance

Unknown duplicated duplicate code
duplicate remove duplicate

for commit classification, we examined several options, such as F-measure, Ac-
curacy, precision, and recall. Not all metrics would deal well with the imbalanced
nature of our dataset. Hence, we opted for the F-measure as the standard met-
ric, as it is the harmonic mean of both precision and recall. Thus, the recall and
precision are represented under the F-measure values.

Figure 3 shows F-measure numbers for the five baseline models in the commit
dataset. Four of the baseline algorithms have perform relatively well for the task
of commit classification (Linear SVC, Decision Tree, LR and Multinomial NB).
Only Random Forest does not perform well for the task. The F-measure values for
Random Forest achieved only around 20%. The other four algorithms performed
relatively well: Multinomial NB (around 73%), Decision Tree (74%), Linear SVC
(around 75%), and LR on average 76%. Since LR achieved the best results
among the baseline models, it was selected as a representative model in our next
study about the effectiveness of commit classification (Section 4.2). Thus, we
can conclude that random models have not achieved a great performance for
the commit classification problem, as the best algorithm (LR) achieved 76% of
F-measure.

Fig. 3. Baseline ML Models F-measures.

To further support our analysis focusing on LR, we have generated the confu-
sion matrix from the LR execution. Figure 4 exemplifies the errors the LR model



10 G.E. Santos and E. Figueiredo

has committed. In the left of Figure 4, we have the actual labels from the unified
dataset; in the bottom, we represent the predicted label by the LR algorithm.
The total commits correctly classified is represented in the diagonal, where the
actual and predicted labels for each commit are situated. As we can see, despite
most of the labels are classified correctly (as around 76% where correctly clas-
sified), there are commits classified wrongly, especially in the “corrective” label
(middle column of the figure). It is important to note that the confusion matrix
was tested in 20% of the dataset randomly selected from the entire set.

From the findings presented in this section, we may conclude the following
answer to RQ1.

RQ1: Random models are reasonably effective for the commit classifica-
tion task, since the best models achieved a F-measure of around 75%.

Fig. 4. Confusion Matrix of Actual and Predicted Labels for Logistic Regression.

4.2 Commit Classification using Natural Language Processing

The second experiment is devoted to answering our research question RQ2: “Can
we improve the effectiveness of random models for the commit classification task
by using natural language processing?”. After generating the results shown in the
last section, we noticed that Logistic Regression achieved a reasonably acceptable



Title Suppressed Due to Excessive Length 11

F-measure for the task of commit classification. However, we also observed an
opportunity to improve the results by applying a state-of-the-art NLP algorithm
proposed by the Facebook Artificial Intelligence Research [1], named fastText.
fastText relies on the skip-gram model, where each word is represented as a bag
of character n-grams. Then, the vector representation is associated with each
character n-gram, and these words are basically the sum of these representations.
It allows the model to compute representations for words that did not appear in
the training data. Furthermore, the proponents of fastText also discussed how
this approach has made the model execute faster than other algorithms presented
in the literature [1]. The fact that fastText algorithm considers words that do not
appear on the vocabulary seems important for the commit classification problem
because developers are sometimes careless about the commit messages [16]. In
other words, it is likely for commit messages to include typos and misspelling
words.

Based on this opportunity, we propose the use of fastText to enhance the
commit classification task. We evaluated this proposal by replicating our study
presented and discussed in Section 4.1 under the same structure and for the
same dataset. We have also created a grid search structure for testing the model
against different configurations of hyper-parameters. For example, we tested vari-
ations of the learning rate and a number of epochs. The best-achieved result is
outputted by a learning rate of 0.1 with 25 epochs, where expressively 91% of
F-measure was achieved for the problem of commit classification. We believe the
results are high due to fastText nature of dealing well with imbalanced classes
[1]. Then, we conclude that fastText was very efficient in the task of commit
classification.

Then, we may draw from this experiment the following answer to RQ2.

RQ2: It is possible to more effectively predict software commit by using
natural language processing. To do so, we developed a model based on
fastText able to achieve 91% of F-measure.

5 Threats to Validity

The study presented in this paper has some limitations that could potentially
threaten our results, as we discuss next. The first threat refers to the chosen
datasets, the datasets are related to other research projects, and despite they
have been labeled for the same purpose of classifying commits into software
activities, they do not follow the same fundamental labels. For example, in the
maintenance activities dataset, the authors focused on the definition of labels
of Levin and Yehudai [14], while in Hindle et al. [9], the authors focused on
the definition of commits proposed by the main author. We may not affirm
surely in which significance it may interfere in this study results. However, in an
ideal circumstance, all the datasets would have the same labels for classification.



12 G.E. Santos and E. Figueiredo

Furthermore, we believe the different definitions used by the authors may have
impacted in the imbalanced classes of the unified dataset.

Another threat to the validity of our research is related to the features
adopted to predict the output using the fastText model. The datasets found in
the literature have not considered, for instance, the “preventive” and “merge”
labels discussed by Hindle et al. [9]. We could not determine in which extend it
may interfere in our results either. However, it is certainly true that our model
generated using fastText would not be able to classify commits related to the pre-
ventive and merge classes properly. Again, there is no consensus of these labels
in the literature. For this reason, it is very difficult to confirm the relevance of
these labels to any classification model adopted in further research approaches.

6 Conclusion and Future Work

Software commit classification is extremely relevant for software projects as it
allows understanding of whole software life cycle and management. The incor-
rect introduction of faulty commits is shown to consume most of the project
budget. Therefore, understanding how these tasks may be classified is useful for
practitioners/managers so that they can plan and allocate resources in advance.
State-of-art techniques to classify commits are very limited using a few labels to
classify the commits.

In this work, we presented an empirical study to investigate the commit clas-
sification based on the commit messages. To do so, we applied a natural language
processing approach, considering more labels than the current state-of-art liter-
ature about this problem. In this paper, the datasets used from other research
projects have five categories: features, corrective, perfective, non-functional, and
unknown. In order to compare the baseline models with the natural language
processing algorithm, we carried out experiments to evaluate effectiveness of
both approaches. First, a hyper-parameter grid was evaluated through repeated
5-fold cross-validation analysis for each algorithm. Then, we evaluated the mod-
els in a test dataset, which did not take part in the training phase. We achieved
76% of F-measure by Logistic Regression, which was the best performing base-
line model. Moreover, the text representation algorithm (i.e., fastText) was able
to reach a high F-measure (approximately 91%). F-measure was chosen for this
study because the dataset is imbalanced. Thus, this approach was able to out-
perform the baseline best performing model; i.e., 76% vs. 91% of F-measure.

As future work, we want to apply the model generated by fastText to other
datasets from GitHub or similar tools. Also, the fastText model could eventu-
ally be improved with more labeled data from other datasets, or with a practical
study to manually labeled data from practitioners. This approach would be simi-
lar to the one applied in previous work [14, 16], where the researchers have asked
developers to classify their own commits. Furthermore, using our own classified
dataset, we could adapt the labels to use all the proposed labels from others [9];
e.g., the preventive and merge labels that were not used in the unified datasets
of this research paper. Another possible approach would be the application of



Title Suppressed Due to Excessive Length 13

the fastText model to classify commits from participants in a controlled exper-
iment. Then, these participants could classify their commits manually allowing
the comparison between our model with a human classification.

Finally, our model could be tested against Deep Learning approaches in or-
der to further expand the results reported in this paper. For instance, we could
apply both CNN (Convolutional Neural Network) and LSTM (Long Short-Term
Memory) models to analyze the results reported by fastText. This is certainly
an interesting path that we may take in the next step of this research as we
progress with the studies about the commit classification task. We are also al-
ready working in an approach to predict software health based on the commit
classification generated from this work.

Acknowledgements. This research was partially supported by Brazilian fund-
ing agencies: CAPES, CNPq (grant 424340/2016-0), and FAPEMIG (grant PPM-
00651-17).

References

1. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. TACL 5, 135–146 (2017)

2. Casalnuovo, C., Suchak, Y., Ray, B., Rubio-González, C.: Gitcproc: A tool for
processing and classifying github commits. In: Proc. of the 26th ACM SIGSOFT
Int’l Symposium on Software Testing and Analysis (ISSTA). pp. 396–399 (2017)

3. Crandall, D.J., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the
world’s photos. In: Proceedings of the 18th International Conference on World
Wide Web (WWW). pp. 761–770 (2009)

4. Davis, J., Goadrich, M.: The relationship between precision-recall and roc
curves. In: Proceedings of the 23rd International Conference on Machine
Learning. pp. 233–240. ICML ’06, ACM, New York, NY, USA (2006).
https://doi.org/10.1145/1143844.1143874

5. Fluri, B., Wuersch, M., PInzger, M., Gall, H.: Change distilling:tree differencing
for fine-grained source code change extraction. IEEE Transactions on Software
Engineering 33(11), 725–743 (Nov 2007). https://doi.org/10.1109/TSE.2007.70731

6. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. J.
Inf. Sci. 32(2), 198–208 (Apr 2006). https://doi.org/10.1177/0165551506062337

7. Hattori, L.P., Lanza, M.: On the nature of commits. In: Proceedings of the
23rd IEEE/ACM International Conference on Automated Software Engineer-
ing. pp. III–63–III–71. ASE’08, IEEE Press, Piscataway, NJ, USA (2008).
https://doi.org/10.1109/ASEW.2008.4686322

8. Hindle, A., German, D.M., Godfrey, M.W., Holt, R.C.: Automatic classification
of large changes into maintenance categories. In: 2009 IEEE 17th International
Conference on Program Comprehension. pp. 30–39 (May 2009)

9. Hindle, A., German, D.M., Holt, R.: What do large commits tell us?: A taxonom-
ical study of large commits. In: Proceedings of the 2008 International Working
Conference on Mining Software Repositories. pp. 99–108. MSR ’08, ACM, New
York, NY, USA (2008)

10. Izquierdo, J.L.C., Cosentino, V., Rolandi, B., Bergel, A., Cabot, J.: Gila: Github
label analyzer. In: 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). pp. 479–483 (March 2015)



14 G.E. Santos and E. Figueiredo

11. Jiang, S., McMillan, C.: Towards automatic generation of short summaries of com-
mits. In: 2017 IEEE/ACM 25th International Conference on Program Comprehen-
sion (ICPC). pp. 320–323 (May 2017). https://doi.org/10.1109/ICPC.2017.12

12. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. In: Proceedings of the 14th International Joint Conference on
Artificial Intelligence - Volume 2. pp. 1137–1143. IJCAI’95, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1995)

13. Levin, S., Yehudai, A.: Using temporal and semantic developer-level informa-
tion to predict maintenance activity profiles. In: 2016 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME). pp. 463–467 (Oct 2016).
https://doi.org/10.1109/ICSME.2016.21

14. Levin, S., Yehudai, A.: Boosting automatic commit classification into mainte-
nance activities by utilizing source code changes. In: Proceedings of the 13th
International Conference on Predictive Models and Data Analytics in Soft-
ware Engineering. pp. 97–106. PROMISE, ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3127005.3127016

15. Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of applica-
tion software maintenance. Commun. ACM 21(6), 466–471 (Jun 1978).
https://doi.org/10.1145/359511.359522

16. Mauczka, A., Brosch, F., Schanes, C., Grechenig, T.: Dataset of developer-labeled
commit messages. In: 2015 IEEE/ACM 12th Working Conference on Mining Soft-
ware Repositories. pp. 490–493 (May 2015). https://doi.org/10.1109/MSR.2015.71

17. Mockus, A., Votta, L.G.: Identifying reasons for software changes using historic
databases. In: Proceedings of the International Conference on Software Mainte-
nance (ICSM’00). pp. 120–. ICSM ’00, IEEE Computer Society, Washington, DC,
USA (2000)

18. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (Nov 2011)

19. Ramos, J.: Using tf-idf to determine word relevance in document queries (1999)
20. Rosen, C., Grawi, B., Shihab, E.: Commit guru: Analytics and risk prediction of

software commits. In: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. pp. 966–969. ESEC/FSE 2015, ACM, New York, NY,
USA (2015). https://doi.org/10.1145/2786805.2803183

21. Safdari, N.: Project title. https://github.com/nxs5899/Multi-Class-Text-
Classification—-Random-Forest (2018)

22. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes?
In: Proceedings of the 2005 International Workshop on Mining Software
Repositories. pp. 1–5. MSR ’05, ACM, New York, NY, USA (2005).
https://doi.org/10.1145/1082983.1083147

23. Viggiato, M., Oliveira, J., Figueiredo, E., Jamshidi, P., Kastner, C.: How do code
changes evolve in different platforms? a mining-based investigation. In: 35th IEEE
International Conference on Software Maintenance and Evolution (ICSME). pp.
218–222 (2019)

24. Wu, H.C., Luk, R.W.P., Wong, K.F., Kwok, K.L.: Interpreting tf-idf term weights
as making relevance decisions. ACM Trans. Inf. Syst. 26(3), 13:1–13:37 (Jun 2008).
https://doi.org/10.1145/1361684.1361686


