
How Difficult and Effective is Writing Assertions
for Observing Bugs at Runtime?

Fischer Ferreira1, Eduardo Fernandes2, Johnatan Oliveira1,
Mauŕıcio Souza3, and Eduardo Figueiredo1

1 Federal University of Minas Gerais (UFMG)
2 Pontifical Catholic University of Rio de Janeiro (PUC-Rio)

3 Federal University of Lavras (UFLA)
{fischerjf, johnatan.si, mrasouza, figueiredo}@dcc.ufmg.br,

emfernandes@inf.puc-rio.br

Abstract. Context: Executable Assertion (EA) is a boolean expression
written to assess the conformance of the program behavior with its re-
quirements. Contrary to unit test cases, EA supports the bug detection
at runtime. An advantage of adopting EA is capturing the fine-grained
bug location. Objective: Writing EA instances can be expensive and time
consuming, due to the need for understanding in depth the program
structure and invariants. Unfortunately, there is no empirical evidence
on how difficult and effective is writing EA instances. This paper fills this
literature gap with a quasi-experiment. Method: We asked 22 participants
to write EA instances for seven AVL Tree properties. We assessed i) the
time spent to write each instance, ii) the difficultly faced by the partici-
pants, and iii) the correctness of each instance. Finally, we assessed how
effective are the EA instances written by the participants in observing
bugs. We relied on the analysis of 155 bugs generated via mutation test-
ing. Results: Participants spent from 5.7 to 13.2 minutes in average to
write each EA instance; they reported an average difficulty from 2.2 to
four out of 5. In average, writing EA instances for three out of the seven
AVL Tree properties was sufficient to observe 57% of the bugs. Conclu-
sions: Our results suggest that writing assertions for observing bugs at
runtime is feasible while quite effective, but it requires reasonable effort.

Keywords: program bug, executable assertion, runtime debugging, mu-
tation testing, quasi-experiment.

1 Introduction

Along with the life cycle of software programs, developers may unexpectedly
introduce bugs [28]. A program bug is a non-conformance between the expected
and the observed behavior of a program [14]. The expected behavior of a pro-
gram is typically characterized by the software requirements [19]. For instance,
the AVL Tree is a traditional data structure designed at the binary search [25].
A major AVL Tree requirement is that inserting nodes should keep balanced the
height of both left and right sub-trees for any node [25]. Thus, a bug would be



2 F. Ferreira et al.

observing an unbalanced height caused by a node insertion. Bugs can ultimately
compromise the experience of stakeholders while using a software program [14].
Therefore, bugs should be detected, reported, and fixed as soon as possible [28].

Program debugging is the process of analyzing the occurrence of bugs [28].
Debugging has three major tasks: i) bug detection, ii) bug report, and iii) bug
fixing [2]. Bug detection means detecting a bug instance in the source code.
Bug report consists of reporting the location of the detected bug instance. Bug
fixing means to fix the program behavior implemented by the bug-affected code.
Debugging is far from being trivial. Particularly, tracking the exact location of
a bug based on the respective bug report is challenging [28]. Through the use of
traditional unit test cases, developers typically have a coarse-grained location,
e.g. at the method level [28]. However, these unit test cases say little about the
exact bug location in a fine-grained level, e.g. at the code statement level.

Executable Assertion (EA) [10] aims at a more fine-grained bug report [1,
10, 12]. An EA is a boolean expression written to assess the conformance of the
program behavior with its requirements [12, 24]. Writing EA instances means
instrumenting, i.e. equipping, the software program with a verification layer [12].
This verification layer is designed to observe the program behavior at runtime,
targeting specific parts of the source code such as code statements [12]. Different
of unit test cases, EA detects bugs at runtime in a fine-grained level, thereby
reporting those code statements affected by bugs. The drawback of adopting EA
is the need for deeply understanding the code properties and invariants, which
may be expensive and time consuming [1]. Such understanding is require to write
effective EA instances. Unfortunately, there is still no empirical study aimed at
investigating how difficult and effective writing EA instances can be.

In this paper, we partially address the aforementioned literature gap with an
empirical study. We carefully designed and performed a quasi-experiment [26]
with 22 students enrolled in undergraduate and graduate courses of Computer
Science and related areas. In a laboratory environment, we asked the partici-
pants to write EA instances for seven AVL Tree properties. We then assessed
time spent, difficulty, and correctness of the written EA instances. Additionally,
we assessed the effectiveness of these instances in detecting bugs. For this pur-
pose, we relied on the analysis of 155 bugs automatically generated via mutation
testing [14]. Mutant versions of the AVL Tree implementation were generated
with MuClipse [20]. Each mutation version is affected by a bug instance, which
represents a recurring bug introduced by real developers [14].

Our study results provided us with a first comprehension on how difficult
and effective can be writing EA instances. Participants spent from 5.7 to 13.2
minutes in average to write each EA instance. Additionally, participants have
reported an average difficulty from 2.2. to four out of five. These results regard
experienced participants in AVL Tree without expertise in EA writing. Finally,
in average, writing EA instances for three out of the seven AVL Tree properties
was sufficient to observe 57% of the bugs. The conclusion is that, in our quasi-
experiment, writing assertions for observing bugs at runtime showed feasible
while quite effective. However, writing these assertions requires reasonable effort.



How Difficult and Effective is Writing Assertions 3

2 Background

2.1 AVL Tree

As discussed in Section 1, we selected the AVL Tree for supporting our quasi-
experiment regarding the difficulty and effectiveness of writing EA instances.
We decided to use the AVL Tree for a few reasons: i) this is a traditional data
structure designed at the binary search [4, 25], ii) students are quite familiar with
AVL Tree properties and implementation; iii) the AVL Tree implementation is
sufficiently short and complex to be used for experimentation along a few hours.
Table 1 lists seven invariant properties of the AVL Tree, which we extracted from
a previous work [4] and selected for the quasi-experiment. Invariant properties
are properties of that should always be preserved along with the use of the
data structure. Due to time constraints for performing the quasi-experiment,
we discarded two other properties regarding: i) the tree chaining in terms of
child and father nodes and ii) the tree leaves. The AVL Tree properties are too
complex to implement in a few hours.

Table 1. AVL Tree Invariant Properties Used in the Quasi-Experiemnt

ID Property Description

P1 Tree without elements If the number of elements in a tree is zero then the root should be null

P2 Tree with only one ele-
ment

If the root is non-null and the root height is zero then the left and right children
must be null

P3 Tree with more than one
element

If the root is non-null and the root height is greater than or equal to one then the
left, right, or both branches should be different from null

P4 Binary search tree For every element that belongs to the binary search tree the child on the left must
be smaller than his father, and the son on the right must be bigger than your father

P5 Number of children of a
node

For every element belonging to the binary search tree, you can have only one left
a direct child and one right direct child

P6 Tree balancing For every balanced tree, the height of the left node minus the height of the right
node must be less than or equal to one unit

P7 Tree height For every binary search tree, the total height must be less than 1.44 ∗ log(n + 2) −
1.328

2.2 AVL Tree Instrumentation

Writing EA instances implies instrumenting, i.e. equipping, the software program
with a verification layer able to observe bugs at runtime [1]. In a previous work,
we have introduced a systematic model for instrumenting the source code of
a program aimed at incorporating EA [10]. Our model is constituted of the
following steps: i) to extend the original class we aim at instrumenting with EA
instances; ii) in the child class, to write each EA instance targeting an invariant
property of the original class into a private method; iii) to create a public method
called verifier responsible for calling all private methods that implement an
EA instance; iv) to instantiate an object of child class for calling the verifier

method and, therefore, triggering the written EA instances at runtime.
Aimed to support of quasi-experiment, we have provided each participant

with a Java implementation of the AVL Tree program based on a previous
work [25]. For the sake of simplicity, we have prepared the program to par-
tially instrument the AVL Tree. Thus, the participant should be concerned only



4 F. Ferreira et al.

with the EA writing. The program was organized in two packages and seven
classes. The main package, called AVLTree, has five classes that implement the
AVL Tree data structure. The AVLInstrumentada class was designed for the
participants to write each EA instance. Listing 1 depicts an example of a EA
instance targeting the property P6 – Tree balancing (see Table 1).

1. private boolean verifyTreeBalancing(AvlNode t) {

2. if (t != null) {

3. verifyTreeBalancing(t.left);

4. if (t.left != null && t.right != null) {

5. try { if ((t.left.height - t.right.height) > 1) throw new IllegalStructureException(); }

6. catch (IllegalStructureException e) e.printStackTrace(); }

7. verifyTreeBalancing(t.right); }

8. return true;

9. }

Listing 1. An Example of a Written EA Instance

2.3 Unit Test Cases versus Executable Assertions

We discuss below the practical difference between adopting unit test cases and
EA. Let us assume that one method implements the node insertions into an
AVL Tree. A typical unit test case would be written to assess the whole method
rather than its statements. Thus, the test case could report eventual bugs at the
method level, without further details on the code statement that originated the
bug. Consequently, the developer in charge of fixing the bug should understand
the method’s source code. The bug could be related to any AVL Tree property,
including the height balance. In this case, writing one EA for each AVL Tree
properly could help to locate the bug. When observing the bug, an EA instance
would provide the developers with the exact bug location.

Although EA is quite promising in supporting the bug detection with a fine-
grained bug report, writing EA can be expensive and time consuming [1]. In
the AVL Tree example, many invariant properties (Table 1) should be deeply
understood by the developer. Some properties, such as the tree self-balancing, are
not trivial to verify (see Listing 1). More critically, different EA instances should
be written to assess each property, which is time consuming. For instance, self-
balancing should be assessed for both node insertions and deletions. This study
aims at exploring both time spent and difficulty in writing EA instances.

2.4 Mutation Testing

Mutation testing is an approach for enhancing the quality of test suites [2, 27].
This approach typically relies on the automatic generation of mutant versions
for a given software program. Each mutant version is a similar program with
punctual changes, e.g. at the code statement or method levels, applied to the
original code structure. These changes represent bugs commonly introduced by
real developers along with the life cycle of their programs [13]. The set of mu-
tation versions is submitted to verification by a test suite. The higher is the
percentage of bugs captured by the test suite, the higher is the test suite qual-
ity [17, 19]. A mutant version is killed whenever the test suite is able to observe
the bug implemented by the mutant; otherwise, we say the mutant is alive [5].



How Difficult and Effective is Writing Assertions 5

3 Study Design

We relied on strict empirical guidelines [3, 26] for Software Engineering research
in this work. We describe below our goal and research questions (Section 3.1),
steps and artifacts (Section 3.2), and a participant overview (Section 3.3).

3.1 Goal and Research Questions

Based on the Goal Question Metric template [3], we systematically defined our
study goal as follows: analyze EA instances written by participants to observe
program bugs at runtime; for the purpose of empirically assessing how difficult
and effective is writing EA instances; with respect to i) time spent by participants
to write EA instances, ii) difficulty reported by the participants to write the EA
instances, iii) correctness of these instances, and iv) effectiveness of EA instances
in observing bugs; from the viewpoint of software developers and researchers
with expertise in software testing; in the context of students enrolled in either
undergraduate or graduate courses in Computer Science and related areas. We
defined four research questions (RQs) described below.

RQ1: How long do participants take to complete the writing of EA instances?
–For agile development teams, time to deliver software programs is typically
scarce [23]. Consequently, participants are often forced to prioritize other de-
velopment tasks, e.g. the addition of new program features [6, 15], rather than
testing their programs. Thus, it is desirable that bug detection techniques will
not be time consuming to use. We aim at understanding how much time partic-
ipants usually spent to write an EA instance. As any other lightweight formal
method, EA writing can be too costly for practical recommendation. With RQ1,
we expect to acquire a first understanding on the time spent by participants ex-
perienced in AVL Tree properties but without experience in EA writing.

RQ2: How difficult is writing EA instances? –Understanding the difficulty
of writing EA instances is important to characterize the complexity of this task.
Indeed, unit testing is quite popular in industry [22] and participants are used
to write unit test cases rather than EA instances. Through RQ2, we aim at
understanding, in a Likert scale [18] from one to five, how difficult is writing EA
instances. If our quasi-experiment participants are familiar with unit test cases
but still find it easy to write EA instances, then adopting EA may be feasible.

RQ3: How often do participants write EA instances that correctly implement
the AVL Tree properties? – We designed our quasi-experiment to be performed
by participants with no previous experience with writing EA instances. It may be
the case that this tasks is difficult in such a way participants cannot implement
correct EA instances. RQ3 was ultimately designed to support our next RQ.

RQ4: How effective are the EA instances written by participants in detecting
bugs? – As important as understanding the difficulty of writing EA instances
is assessing how effective these instances are in detecting bugs. Indeed, the ma-
jor purpose of this technique is observing bug instances in programs. Through
RQ4, we assess the average percentage of bugs detected by the number of EA



6 F. Ferreira et al.

instances implemented by the participants. We expect to understand how many
EA instances are necessary to detect a reasonable amount of bugs in a program.

3.2 Steps and Artifacts

The study artifacts are available in the companion research website [9].
Step 1: Select Target Program – As discussed in Section 2.1, we have se-

lected an AVL Tree implementation to support our quasi-experiment. Thus, we
expected to provide the participants with a program that is sufficiently short
and complex for reasoning about and writing EA instances.

Step 2: Prepare Forms – We have defined three forms aimed at collecting all
data for the quasi-experiment. Consent Form aims at collecting the participant
consent to allow us both collecting and analyzing the quasi-experiment data.
Background Form has six questions on the participant expertise with Software
Engineering techniques, e.g. object-oriented programming and EA. Experiment
Form describes the seven AVL Tree properties to be implemented as EA in-
stances in up to one hour in total. For each property, we ask the participant to
inform: i) start time, finish time, and EA writing difficulty in a Likert scale [18]
from one, i.e. the lowest difficulty, to five, i.e., the highest difficulty or impossibil-
ity to write the EA instance. We arranged the seven AVL properties of Table 1
from the easiest to the hardest one from our opinion.

Step 3: Run Pilot Quasi-Experiment – We have run a pilot version of our
quasi-experiment with four participants in order to shape our study design and
artifacts. This pilot version helped us to refine the artifacts and the total quasi-
experiment time. We carefully discarded the results provided by the pilot study
participants, thereby preventing biases in our study results.

Step 4: Recruit Quasi-Experiment Participants – We have recruited 33 un-
dergraduate and graduate students to participate in the quasi-experiment. These
participants were enrolled in either undergraduate or graduate courses at the
Federal University of Minas Gerais (UFMG). We further filtered these partici-
pants according to some important criteria described in Section 3.3.

Step 5: Instruct Participants on the Quasi-Experiment – All participants
were accommodated in a laboratory environment. We introduced the study goal
without further details that could affect the experiment with result biases. After
that, we briefly instructed the participants on the basics of EA (definition and
application) and the AVL Tree properties. Finally, we instructed the participants
regarding the quasi-experiment procedures, especially on how to instrument the
AVL Tree program to implement the EA instances (cf. Section 2.2).

Step 6: Collect Participant Consent and Background – We asked each par-
ticipants to sign the Consent Form, thereby allowing us to anonymously collect
and analyze the quasi-experiment data. Additionally, each participant has filled
out the Background Form.

Step 7: Allocate Participants to Computers – We have allocated each par-
ticipant to an individual desktop computer equipped with: the Eclipse IDE for
reading and writing code; the source code of the AVL Tree program (Section 2.2)
already imported into the IDE; and the formal definition of seven AVL Tree



How Difficult and Effective is Writing Assertions 7

properties listed in (Table 1) for which the participants will implement the EA
instances. For illustration purposes, the property P6 – Tree balancing is formal-
ized as follows: ∀n ∈ tree: ((n → left != null) && (n → right != null)) ⇒
((n → left → height) − (n → right → height)) ≤ 1, where n is an arbitrary
tree node, → left (or → right) is the left (or right) child of the current node,
and → height is the tree height from the current node.

Step 8: Run the Quasi-Experiment – All participants had up to one hour for
completing the quasi-experiment while filling the Experiment Form (details in
Step 2). We answered eventual questions made by the participants along with
the quasi-experiment execution. Nevertheless, we carefully avoided biasing the
participants’ responses with our answers.

Step 9: Compute Mutant Versions of the AVL Tree Program – We used
MuClipse4, an Eclipse IDE plugin, to generate the mutant versions of the Java-
based AVL Tree implementation (Section 2.2). MuClipse supports code changes
at both class level – e.g., changes affecting the class coupling or inheritance – and
method level – e.g., changes affecting the arithmetical and logical operations. We
obtained 155 mutant versions that actually differ from the original program.

Step 10: Submit Written EA Instances to Mutant Testing – We used Mu-
Clipse to perform the mutation testing on the set of EA instances written by the
quasi-experiment participants. Our goal was understanding the effectiveness of
these participant-written instances in observing bugs. We set MuClipse to run
with its maximal run time available. Thus, we expected to prevent that mutant
versions of the program are not killed due to run time exception.

3.3 Participant Overview

A total of 11 out of the 33 participants were discarded from the study because:
four participants engaged in the pilot study; four participants failed to imple-
ment EA instances to all seven AVL tree properties; one participant provided
us with unreliable data; and two participants did not send us the code of the
implemented EA instances by the end of the quasi-experiment. In the end, 22
participants remained for the data analysis and report. The Background Form
revealed the following about the participants’ expertise. The majority of partic-
ipants (86.4%) have professional development experience. Additionally, 95.5%
of the participants reported some experience with Java programming; the same
percentage applied to object-oriented programming. Less than a half (40.9%) of
the participants had previous knowledge about EA in theory or practice.

4 Results and Discussion

4.1 Time Spent to Write EA Instances (RQ1)

Figure 1 summarizes both mean and distribution of time spent by the partic-
ipants to write EA instances for each AVL Tree property. As aforementioned

4 http://muclipse.sourceforge.net/



8 F. Ferreira et al.

(Section 3.2), the time spent by participant was collected from the Experiment
Form. Based on Figure 1(a), we observe that participants spent from 5.7 to 13.2
minutes to write each EA instance. Properties P1 – Tree without elements and
P4 – Binary search tree required more time to be addressed with assertions: 13.2
and 11.4 minutes, respectively. This result may be partially explained by the fact
that P1 was the first property presented in the Experiment Form. Indeed, par-
ticipants were just starting the quasi-experiment, so that they may have spent
more time in understanding the procedures and tasks. Additionally, P4 is quite
time consuming to address, especially because it requires inspecting each node
of the AVL Tree. Thus, it was expected that participants would spent a consid-
erable time in drawing a strategy to navigate through the tree for inspection.
For the record, P5 to P7 have a similar logic; thus, developers tend to spend less
time to address these properties after P4 – which our results have confirmed.

(a) Mean Time (b) Time Distribution

Fig. 1. Mean and Distribution of Time Spent by AVL Tree Property

Aimed at a detailed understanding, Figure 1(b) illustrates the time distri-
bution for each AVL Tree property. We have grouped these results by the dis-
tribution pattern as follows. Group 1 (P1, P2, and P4): P1 and P2, which
are the two first properties in the Experiment Form, showed a highly spread
distribution. For instance, P1 values ranged from two to 30 minutes. P4, which
is a hard property to address, showed a similarly spread distribution: from three
to 20 minutes besides outliers lower than 25 minutes. Group 2 (P3, P5, P6,
and P7): these properties showed the less spread distributions. This observation
could be justified by the fact that P3 is among the easiest addressable properties,
while P5, P6, and P7 have a logic quite similar to P4, which is hard rely on a
similar logic of P4, which is considerably time consuming.

Summary of RQ1: Participants took from 5.7 to 13.2 minutes in average to write
EA instances for each AVL Tree property. Time distribution was highly spread for
properties with a justifiable complexity according to our study design (e.g. P1 and



How Difficult and Effective is Writing Assertions 9

P4). A quite balanced distribution was found for the other properties. In summary,
participants spent a reasonable time while writing EA instances.

4.2 Difficulty Faced while Writing EA Instances (RQ2)

Figure 2 show both mean and distribution of difficulty to write EA instances
for each AVL Tree property. Figure 2(a) shows an average difficulty ranging
from 2.2 to four out of five. Difficulty increased along with the quasi-experiment
execution, expect from P1 to P3. Indeed, P1 – Tree without elements, which
is the first property in the Experiment Form, was when participants were in-
troduced to EA. After that, P2 and P3 were easier to address with assertions,
though these properties are more complex then P1 in our opinion. In summary,
the learning factor may have facilitated the EA writing. Differently, difficulty
increased from P4 on. It is worth mentioning that P4 – Binary search tree has
a quite complex logic, but its successors (P5 to P7) share this logic. Although
the participants were familiar with the AVL Tree properties (Section 3.3), they
found it particularly difficult to address these more complex properties.

(a) Mean Difficulty (b) Difficulty Distribution

Fig. 2. Mean and Distribution of Difficulty for each AVL Tree Property

Figure 2(b) illustrates the difficulty distribution reported for each AVL Tree
property. We have found two different groups of distributions described as fol-
lows. Group 1 (P1, P2, P3, and P6): these properties presented the lowest
distributions. This result can be partially justified by the fact that P1 to P3
have the less complicated logic. This is why we arranged these properties to be
addressed first i the Experiment Form. In the case of P6, it is worth remember-
ing that P6 reuses the logic of P4, which is quite complicated. Group 2 (P4,
P5, and P7): these properties showed the highest difficulty distributions. The
second quantile for all three distributions is greater than three, which confirms
a high effort to write EA instances for complex properties.



10 F. Ferreira et al.

Summary of RQ2: Participants found it considerably difficult to write EA in-
stances. The average difficulty ranged from 2.2 to four. The most difficult proper-
ties to address with EA instances are those with a more intricate logic.

4.3 Correctness of the Participant-Written EA Instances (RQ3)

Figure 3 presents the percentage of correctly written EA instances for each
AVL Tree property. In this particular case, we observed three major groups
of properties, which we describe as follows. Group 1 (P2 and P3): only two
properties presented a percentage of correctly written EA instances greater than
the percentage of wrongly written instances. This result is not exactly surprising
because, as discussed in Section 4.2, both P2 and P3 had a quite simple logic.
Besides that, these properties succeeded P1 in the order of the Experiment Form.
Group 2 (P1 and P7): for these two properties, the percentages of correctly
and wrongly written EA instances is practically the same. This result is partially
justifiable by the fact that, as discussed in Section 4.1 and 4.2, P1 was the first
property to be introduced to the participants. It is worth mentioning that only a
few participants wrote EA instances for P7. Thus, the balanced rates of correctly
and wrongly written EA instances is reasonable. Group 3 (P4, P5, and P6):
for these three properties, we observed greater rates of wrongly written EA
instances when compared to correctly written ones. This result is acceptable
once these properties are among the most complex ones.

Fig. 3. Percentage of Correct EA Instances for each AVL Tree Property

Summary of RQ3: Participants rarely wrote EA instances that correctly imple-
ment the AVL Tree properties. Once our participants are familiar with AVL Trees,
we conclude that non-experts are quite likely to write wrong EA instances.



How Difficult and Effective is Writing Assertions 11

4.4 Effectiveness of the Participant-Written EA Instances (RQ4)

Table 4.4 presents the percentage of participants (second column) and mean of
killed mutants (third column) for different quantities of written EA instances
(first column). We observed that none out of the 22 participants address all
seven AVL Tree properties with EA instances. This result indicates the difficulty
to perform this task in practice. Nevertheless, most participants (60%) wrote
EA instances for at least tree properties. This result is particularly interesting
because, with just three EA instances, an average of 57% mutants were killed.
The mean percentage of killed mutants reached (70%) its peak with exactly five
written EA instances. It is worth mentioning that, as discussed in Section 2.1,
we have originally derived a total of nine invariant properties for the AVL Tree.
Therefore, in a general analysis, addressing one third of the AVL Tree properties
was sufficient to capture a half of the 155 automatically generated bugs.

Table 2. Percentage of Killed Mutants per Number of EAs

Quantity of EA
Instances

Percentage
Participants Mean of Killed Mutants

1 23% 46%
2 18% 52%
3 41% 57%
4 9% 65%
5 5% 70%
6 5% 66%

Summary of RQ4: EA instances showed quite effective in detecting bugs. With
only one third of the AVL Tree properties addressed with EA instances, partici-
pants were able to observe 57% of the bugs generated via mutation testing.

5 Threats to Validity

Construct Validity: We have refined our study steps and their respective ar-
tifacts through a pilot study with four participants (Section 3.2). Thus, we ex-
pected to mitigate biases regarding an insufficient data collection. Additionally,
to enable the quasi-experiment execution in a feasible time, we cherry-picked the
AVL Tree program for analysis and EA writing. As discussed in Section 2.1, stu-
dents are familiar with AVL properties and implementation; thus, this program
sounds adequate for an academic experiment. Moreover, we discarded those AVL
Tree properties that we judged too hard for participants to address in an one-
hour quasi-experiment. We carefully selected a laboratory environment so that
participants could comfortably perform the quasi-experiment tasks. Finally, we
selected a well-known tool, MuClipse, to run the mutation testing. This tool has
been successfully used in both academia and industry [20].



12 F. Ferreira et al.

Internal Validity: Although Internet access was available and allowed along
with the quasi-experiment, we assisted the participants in performing their tasks.
As discussed in Section 3.2, we addressed the participants’ doubts whenever
possible without biasing their responses – especially during the form filling.
Thus, we expected to assure that all participants understood the study proce-
dures and tasks. We decided to perform the quasi-experiment during a Software
Engineering-related class, so that all participants are motivated to give their
best to perform their tasks successfully. We asked each participant to inform
both start and finish time for each EA instance implementation. This design
decision, inspired by our past work [7], may represent a threat to the study va-
lidity if participants forget to compute time along with the quasi-experiment. We
minimized threats of this matter by instructing the participants with examples
before the quasi-experiment execution.

Conclusion Validity: We carefully filtered the quasi-experiment data be-
fore performing the data analysis. By eliminating data of participants that could
compromise our study results (Section 3.3), we removed possible anomalies in
the analysis of time, difficulty, and so forth. Similar to our past work [7, 8], we ap-
plied techniques of descriptive analysis focused on the data distribution. We have
performed a manual analysis of the EA instances written by the participants,
aimed at computing correctness (Section 4.3). Although this manual analysis
could represent a threat to the study validity, we have allocated sufficient time
to perform this analysis carefully. Finally, with respect to the effectiveness (Sec-
tion 4.4), we carefully filtered the mutant versions of the AVL Tree program
via MuClipse. Especially, we discarded all equivalent mutants, i.e., those mutant
versions that are equivalent to the original program [5].

External Validity: We have performed our quasi-experiment with 22 Brazil-
ian students. As one could expect, our participant set may not represent all
Brazilian students in terms of background and professional experience. Never-
theless, this participant set allowed to achieve some preliminary insights on the
difficulty and effectiveness of writing EA instances. Additionally, we restricted
our quasi-experiment execution to one hour, especially because the experiment
was conducted during a class. This time constraint may affect our findings, since
participants may be uncomfortable to write code under time restrictions. How-
ever, according to our pilot study (Section 3.2), we observed that one hour was
sufficient for participants to write at least a few EA instances correctly. Besides
that, we performed the quasi-experiment in a laboratory equipped with sufficient
desktop computers, aimed at a successful participation. We invite researchers to
replicate our work in other academic settings and validate our study findings.

6 Related Work

Studies [1, 11, 12, 16, 21] explored the runtime bug detection via approaches sim-
ilar to Executable Assertion (EA). One study [1] targeted the incorporation of
Design by Contract (DbC) principles – e.g. invariants and preconditions – into
concurrent Java programs. Such incorporation was enabled by runtime assertion,



How Difficult and Effective is Writing Assertions 13

which verify the program conformance with those principles. Other study [16]
regarding DbC introduced measures targeting i) the ability of capturing bugs at
runtime and ii) the effort required to find the exact location of a program bug.
Another work [11] employed EA for verifying the correctness of critical programs
through their execution flow. This work, similarly to another one [21], suggested
that EA instances may observed a plenty of bug types at runtime. Finally, a
recent work [12] empirically validated the potential of EA instances in enhanc-
ing the maintainability of data structure invariants, such as the AVL Tree ones
(Section 2.1). Nonetheless, previous studies lacked empirical evidence on how
difficult and effective is writing EA instances from a developers’ perspective.

7 Final Remarks

This paper discussed a quasi-experiment with 22 students on how difficult and
effective is writing Executable Assertion (EA). Each participant wrote EA in-
stances for seven invariant properties of the AVL Tree. We assessed the average
time spent and difficulty of writing EA instances, plus the correctness and the ef-
fectiveness of these instances in observing 155 automatically generated bugs. We
found out a considerable effectiveness of EA instances in capturing bugs (55%
of the bugs observed with only a few EA instances). However, each EA instance
can be costly to write, taking up to 13.2 minutes each. Our quasi-experiment
provided only a few hints on the difficulty and effectiveness of adopting EA in
practice. Further studies are required to: i) understand the EA adoption by de-
velopers in real-world development settings, and ii) compare the cost-benefit of
adopting EA against traditional bug detection techniques, e.g. unit testing.

References

1. Araujo, W., Briand, L., Labiche, Y.: On the effectiveness of contracts as test oracles
in the detection and diagnosis of functional faults in concurrent object-oriented
software. IEEE Trans. Softw. Eng. (TSE) pp. 971–992 (2014)

2. Ayari, K., Bouktif, S., Antoniol, G.: Automatic mutation test input data generation
via ant colony. In: 9th GECCO. pp. 1074–1081 (2007)

3. Basili, V., Rombach, H.D.: The TAME Project: Towards improvement-oriented
software environments. IEEE Trans. Softw. Eng. (TSE) 14(6), 758–773 (1988)

4. Bronson, N., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary
search tree. In: ACM SIGPLAN Notices. vol. 45, pp. 257–268 (2010)

5. DeMillo, R., Lipton, R., Sayward, F.: Hints on test data selection: Help for the
practicing programmer. IEEE Computer 11(4), 34–41 (1978)

6. Fernandes, E.: Stuck in the middle: Removing obstacles to new program features
through batch refactoring. In: 41st ICSE, Doctoral Symposium. pp. 206–209 (2019)

7. Fernandes, E., Ferreira, F., Netto, J.A., Figueiredo, E.: Information systems de-
velopment with pair programming: An academic quasi-experiment. In: 12th SBSI.
pp. 486–493 (2016)

8. Fernandes, E., Ferreira, L.P., Figueiredo, E., Valente, M.T.: How clear is your code?
An empirical study with programming challenges. In: 20th CIbSE, ESELAW Track.
pp. 1–14 (2017)



14 F. Ferreira et al.

9. Ferreira, F., Fernandes, E., Oliveira, J., Souza, M., Figueiredo, E.: Companion
research website. https://fischerjf.github.io/assertions/ (2019)

10. Ferreira, F., von Staa, A., Figueiredo, E.: Uma análise da eficácia de assertivas
executáveis como indicadoras de falhas em software. In: 9th SAST. pp. 1–10 (2015),
(In Portuguese)

11. Goloubeva, O., Rebaudengo, M., Reorda, M.S., Violante, M.: Soft-error detection
using control flow assertions. In: 18th DFT. pp. 581–588 (2003)

12. Gyori, A., Garg, P., Pek, E., Madhusudan, P.: Efficient incrementalized runtime
checking of linear measures on lists. In: 10th ICST. pp. 310–320 (2017)

13. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. (TSE) 37(5), 649–678 (2010)

14. Just, R., Jalali, D., Inozemtseva, L., Ernst, M., Holmes, R., Fraser, G.: Are mutants
a valid substitute for real faults in software testing? In: 22nd FSE. pp. 654–665
(2014)

15. Lavallée, M., Robillard, P.: Why good developers write bad code: An observational
case study of the impacts of organizational factors on software quality. In: 37th
ICSE. pp. 677–687 (2015)

16. Le Traon, Y., Baudry, B., Jézéquel, J.M.: Design by contract to improve software
vigilance. IEEE Trans. Softw. Eng. (TSE) 32, 571–586 (2006)

17. Lee, S., Bai, X., Chen, Y.: Automatic mutation testing and simulation on owl-s
specified web services. In: 41st ANSS. pp. 149–156 (2008)

18. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 140(1),
1–55 (1932)

19. Liu, M.H., Gao, Y.F., Shan, J.H., Liu, J.H., Zhang, L., Sun, J.S.: An approach
to test data generation for killing multiple mutants. In: 22nd ICSM. pp. 113–122
(2006)

20. Ma, Y.S., Offutt, J., Kwon, Y.R.: MuJava: A mutation system for Java. In: 28th
ICSE. pp. 827–830 (2006)

21. Mahbub, K., Spanoudakis, G.: Run-time monitoring of requirements for systems
composed of web-services: Initial implementation and evaluation experience. In:
3rd ICWS. pp. 257–265 (2005)

22. Papadakis, M., Shin, D., Yoo, S., Bae, D.H.: Are mutation scores correlated with
real fault detection? A large scale empirical study on the relationship between
mutants and real faults. In: 40th ICSE. pp. 537–548 (2018)

23. Poth, A., Sasabe, S., Mas, A., Mesquida, A.L.: Lean and agile software process
improvement in traditional and agile environments. J. Softw.: Evol. Process pp.
1–11 (2019)

24. Venkatasubramanian, R., Hayes, J., Murray, B.: Low-cost on-line fault detection
using control flow assertions. In: 9th IOLTS. pp. 137–143 (2003)

25. Weiss, M.: Data Structures and Algorithm Analysis in Java. Pearson, 3rd edn.
(2011)

26. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer Science & Business Media, 1st edn.
(2012)

27. Yao, X., Harman, M., Jia, Y.: A study of equivalent and stubborn mutation oper-
ators using human analysis of equivalence. In: 36th ICSE. pp. 919–930 (2014)

28. Yi, Q., Yang, Z., Liu, J., Zhao, C., Wang, C.: A synergistic analysis method for
explaining failed regression tests. In: 37th ICSE. pp. 257–267 (2015)


