
Frameworks and High-Availability in
Microservices: An Industrial Survey

Gastón Márquez1, Jacopo Soldani2, Francisco Ponce1, and Hernán Astudillo1

1 Toeska Research Group
Universidad Técnica Federico Santa María,
Avenida España 1680, Valparaíso, Chile

gaston.marquez@sansano.usm.cl, francisco.ponceme@usm.cl,
hernan@inf.utfsm.cl

2 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
soldani@di.unipi.it

Abstract. While building microservice-based applications, architects
need to choose among different frameworks to provide generic function-
alities to address quality attribute concerns, such as high-availability. Al-
though using frameworks brings various benefits, it is not clear how they
actually impact on the properties characterising the high-availability of
microservices. To this end, this article reports the level of agreement
among practitioners on the positive and negative impact of frameworks
on the high-availability of microservices. More precisely, we first sys-
tematically identify 12 properties characterising the high-availability of
microservices. We then present the outcomes of an industrial study show-
ing how existing open-source frameworks positively/negatively impact on
the 12 properties characterising high-availability of microservices. Re-
sults indicate that practitioners agree on the fact that frameworks do
positively/negatively impact on high-availability of microservices, and
provide a first body of knowledge for suitably selecting frameworks while
developing and deploying microservices.

Keywords: Microservices · High-availability · Frameworks · Survey

1 Introduction

Microservices are gaining momentum in enterprise IT, with core businesses of
major IT players (e.g., Amazon, Netflix, Spotify and Twitter) already being
delivered through microservice-based solutions [23]. This is because microservices
(if properly setup) can help ensuring quality attributes of applications, e.g.,
availability, portability, scalability [19].

A key question is hence how to properly setup microservices to ensure quality
attributes, and (as for the scope of this paper) to ensure their high-availability.
While developing and deploying microservice-based applications, various deci-
sions must indeed be tackled to make them truly featuring high availability

properties. Such decisions include suitably selecting frameworks for implement-
ing their components and deployment infrastructure [17, 21]. We hereafter refer
to frameworks as collections of reusable software elements providing generic func-
tionalities to address recurring domain and quality attributes [13]. In this same
concept, we also include technological tools that use sets of frameworks to provide
their respective functionalities (such as Kubernetes, MongoDB, among others).

Although there exist frameworks geared towards ensuring high-availability
in microservices-based applications [16], to the best of our knowledge, there is
currently no body of knowledge recapping the actual impact of frameworks on the
high-availability of microservices, from the industrial practitioners’ viewpoint.
Different frameworks indeed target different properties characterising both high-
availability and other quality attributes, and the lack of the above mentioned
body of knowledge makes it not clear which of the properties characterising high-
availability are positively or negatively affected by a particular framework. This
may result in incorrect selections of frameworks, with application administrators
that may select frameworks not negatively impacting on one of the properties
characterising the high-availability of microservices, which they consider crucial.

A support for suitably selecting frameworks is hence needed, and this paper
tries to make a first step in this direction by focusing the following question: Is
a framework positively or negatively impacting on the properties defining high-
availability of the microservices forming an application?

To answer the above question, we first identified the properties characterising
the high-availability of microservices with a systematic multivocal review. We
then considered the microservice-related frameworks identified in [16], and we
systematically elicited their positive and negative impact on the identified high-
availability properties by analysing the issues and comments raised within the
repositories of 18 open-source microservice-based projects. Finally, to evaluate
our findings, we conducted a survey targeting 40 practitioners daily working
with microservices, aimed at analyzing their level of agreement on the elicited
positive and negative impacts of frameworks on the properties characterising
high-availability of microservices.

The main contributions of this paper are hence (i) a list of properties char-
acterising the high-availability of microservices, and (ii) a two-stage exploratory
study illustrating positive and negative impacts of existing frameworks on such
properties. Our contributions provide a first body of knowledge on the actual
impact of framewoks on the properties characterising the high-availability of mi-
croservices, and confirm that selecting different frameworks differently impacts
on the different properties.

The rest of this article is structured as follow: Section 2 sets the stage of our study
by listing the open-source frameworks known to relate to the high-availability of
microservices; Section 3 elicits the properties characterising the high-availability
of microservices, and Section 4 analyses the impact of frameworks on such prop-
erties; Section 5 describes and discusses the results of our study; Section 6 and 7
discuss threats to validity and related work, respectively; Section 8 draws some
concluding remarks.

2 Setting the stage

In our previous study [16], we conducted an empirical study aiming at identifying
frameworks used to develop microservices-based systems, and their relation with
microservice patterns and quality attributes. Figure 1 recaps the process we
conducted to obtain frameworks.

Project	1

Project	2

Project	18

Documentation
project	1	

Documentation
project	2	

Documentation
project	18	

Frameworks	project	1

Frameworks	project	2

Frameworks	project	18

+

+

+

Documentation	frameworks	project	1

Documentation	frameworks	project	2

Documentation	frameworks	project	18

QA1
QA2
QA3

QAn

MP1 MP2 MP3 MPm

Correlation	matrix

F2 F8
F1 F3 F5

F3

F7

(i) (ii) (iii) (iv)

Fig. 1. Process to obtain frameworks. “QA”, “MP”, and “F” represents quality at-
tributes, microservices patterns, and frameworks, respectively.

We firstly (i) explored 18 open-source microservices projects chosen using
the benchmark requirements for microservices research proposed in [1]. We then
(ii) analysed documentation and configuration files of each project into elicit the
frameworks used in such projects used, and we (iii) analysed the documentation
of each framework to identify which microservice patterns are implemented by
each framework and which quality attributes are addressed by such framework.
Finally, we (iv) created a correlation matrix recapping the results of our analysis
by relating framework to quality attributes and microservices patterns.

The outcome of our previous study [16] is a mapping of 23 open-source frame-
works to 17 microservice patterns and 6 quality attributes. Such a mapping sets
the stage for the study presented in this paper, as it allows to focus on the open-
source frameworks known to be related to the high-availability of microservices.
Such frameworks are listed in Table 1. We selected these frameworks because,
according to their documentation, the main functionalities they address are as-
sociated with high availability features.

3 Eliciting high-availability properties

The first activity in our study was to identify the properties characterising the
high-availability of microservices (hereafter called high-availability properties, for
brevity reasons). The activity consisted in conducting a systematic multivocal
review, which (due to space limitations) we briefly present hereafter.

Table 1. Open-source frameworks related to the high-availability of microservice.

Framework Description
RabbitMQ Open-source message-broker application framework

Apache Zookeper A service for distributed systems offering several functionalities
Docker A set of platform as a service (PaaS) products

Apache Cassandra Distributed NoSQL database management system
Netlifx Eureka Service registry for resilient mid-tier load balancing and failover
Kubernetes Container-orchestration system
MongoDB Cross-platform document-oriented MoSQL database application

The search in our systematic review was driven by availability checklist de-
scribed in [3]. The checklist provides guidelines for designing and analysing the
availability of system, organised among the following categories: allocation of
responsibilities, coordination model, data model, mapping among architectural
elements, resource management, binding time, and choice of technology. For each
category, there is a further checklist to be analyzed when availability require-
ments or properties should be satisfied.

We exploited the checklist for searching for white literature (i.e., peer-reviewed
academic research papers) and grey literature (i.e., industiral white paper and
blog posts) discussing properties related to the element of the checklist. The
search for white literature was done on well-known indexing sources, i.e., Google
Scholar (primary), ACM Digital Library, IEEE Xplore and Scopus. The search
for grey literature was instead run on Google (with analogous stopping criteria
to those in [19]) and on renowned blogs, i.e., InfoQ (https://www.infoq.com)
and Dzone (https://dzone.com).

Finally, we conducted inter-rater reliability assessment and brainstorming
sessions to refine the list of identified high-availability properties. To this end,
we held (virtual) meetings to identify and describe the properties. Each property
was discussed and negotiated until all research team members agreed on the
property. As a final result, we elicited 12 high-availability properties, which are
listed and described in Table 2.

4 Analysing the impact of frameworks on high-availability

We hereafter illustrate our approach to analyse the impact of frameworks on
high-availability properties. We first illustrate how we elicited the impact of
frameworks from existing open-source microservice-based projects (Sect. 4.1).
We then show how we evaluated the actual perception of industrial practioners
of such impact, based on an online survey (Sect. 4.2).

4.1 Eliciting the impact of frameworks on high-availability, from
existing projects

We analysed the impact of frameworks on high-availability properties by starting
from 18 existing open-source microservice-based project, and by collecting the

Table 2. High-availability properties in microservices-based systems

Id Name Description
P1 High detection of failed

host

This property defines the capability of detect failed hosts in order
to a load balancer can stop requests to them.

P2 Intermittently asyn-

chronous data trans-

mission

Communication property where a message sender does not wait for
a response.

P3 Regular snapshots Property related to recovering the system from planned host main-
tenance owing to hardware upgrade, soft reboot, etc.

P4 Efficient duration of

timeouts periods

Property that prevents remote procedure calls from waiting indefi-
nitely for a response.

P5 High isolation The property where each microservices is its own encapsulated ap-
plication.

P6 Effective load balancing Efficiently distributing incoming network traffic among groups of
backend servers.

P7 Quick broken state re-

covery

Capability to restart states when they are broken for a more ex-
tended period.

P8 High control of failure

propagation

Property which indicates the capability of isolate failures through a
good definition of service boundaries.

P9 High service monitoring

visibility

Property that allows visibility into the health of the microservice
architecture.

P10 Periodic heartbeat sig-

nal

Property related to the periodic signal to check the status of services.

P11 Low application restart-

ing

This property refers to the low rate of restart services when a failure
occurs.

P12 Efficient resources con-

sumption

Property related to the impact on the resources consumption (hard-
ware/software) of a system.

(positive and negative) issues and comments on developers on frameworks and
high-availability. We used the following inclusion and exclusion criteria to select
the 18 open-source projects we considered:

– Inclusion criteria: Benchmark requirements for microservices projects pro-
posed in [1], and projects with source code available.

– Exclusion criteria: Projects with no robust information (basic examples,
projects in process, others), tools to build microservices (instead of frame-
works), component-based projects to build microservices (e.g., projects just
for gateway components to microservices), and projects used as an example
for lectures or talks.

To collect and organise the issues and comments on high-availability of mi-
croservices (hereafter simply called high-availability issues), we followed the pro-
cess shown in Figure 2. For each project, we explored open and closed issues to
identify, collect and organise high-availability issues reported by developers and
related to the at least one of the microservices frameworks listed in Table 1

From a total of 4,188 candidate high-availability issues, we filtered out all
such issues where developers were not describing the rationale for selecting frame-

Project	1

Project	2

Project	18

Open	issues

Closed	issues

Fi
lte
r	i
ss
ue
s

R
el
ev
an
t	i
ss
ue
s

M
er
ge
	is
su
es

C
le
an
in
g	
pr
oc
es
s

High-availability
issues

Brainstorming	sessions

Fig. 2. Process to obtain high-availability issues

works, reducing the scope to 958 (≈ 22.8%) candidate issues. We further refined
the scope by restricting to those issues where we found posts explicitly relat-
ing one of the frameworks in Table 1 to one of the high-availability properties
in Table 2. This allowed us to restrict the scope to 87 high-availability issues,
examples of which (concerning RabbitMQ) are reported below:

– Positive issue: "the Event bus is based on async communication based on
RabbitMQ [...] It is used for integration events derived from transactions that
happened in any of the microservices and when other microservices need to
be aware of those events".

– Negative issue: "If RabbitMQ is unreachable when the service tenant starts
up, the existing connection is lost for whatever reason, it won’t reconnect"

Afterwards, we proceed by identifying and merging similar/analogous candi-
date high-availability issues. We clustered issued based on the frameworks they
correspond to and we analysed clusters to elicit positive and negative high-
availability issues. This allowed us to obtain 8 merged high-availability issues,
an example of which is the following: "RabbitMQ permits implementing asyn-
chronous communication among microservices. But, if a connection is lost, Rab-
bitMQ can affect the number of long-lived connections."

From the obtained high-availability issues, we extracted 17 statements con-
cerning the impact of frameworks on high-availability properties. Such state-
ments are listed in Table 3. The table also indicates whether a statement denotes
a postive or negative impact over corresponding high-availability properties.

4.2 Evaluating high-availablity issues, based on a survey

To evaluate the actual recognition of the statements in Table 3 among industrial
practitioners, we conducted an online survey (following the guidelines described

Table 3. Statements on the positive/negative impact of open-source frameworks on
high-availability properties.

Statement Impact Prop.
S1: RabbitMQ permits implementing asynchronous communication among mi-
croservices

Positive P2

S2: RabbitMQ can affect the number of long-lived connections if a connection is
lost

Negative P1

S3: Apache Zookeeper supports session timeouts Positive P4
S4: Apache Zookeeper can significantly impact on the resources consumption
(hardware/software) of a system

Negative P12

S5: Docker is a good solution for packaging and isolating microservices into con-
tainers

Positive P5

S6: Docker can significantly impact on the resources consumption (hard-
ware/software) of a system.

Negative P12

S7: Docker can hamper the heartbeat-based monitoring Negative P10
S8: Kubernetes supports services monitoring Positive P9
S9: Kubernetes can significantly impact on the resources consumption (hard-
ware/software) of a system

Negative P12

S10: Apache Cassandra supports database service replication Positive P6
S11: Apache Cassandra can significantly impact on the resources consumption
(hardware/software) of a system

Negative P12

S12: Netflix Eureka helps monitoring microservices, by allowing to locate them
and their logs

Positive P9

S13: Netflix Eureka can significantly impact on the resources consumption (hard-
ware/software) of a system

Negative P12

S14: MongoDB supports the isolation of database services Positive P5
S15: MongoDB can hamper the heartbeat-based monitoring of database services Negative P10
S16: MongoDB automatically routes requests to the appropriate databases Positive P2
S17: MongoDB does not support fanning simple transactions out to different
database partitions

Negative P8

in [14, 15]). We hereafter present the survey setting, while its results are discussed
in Sect. 5.

Scope and target audience The scope of the survey falls within the IT in-
dustry, and in particular that regarding the usage of microservices to deliver
core businesses. Within such scope, the focus was on the usage of open-source
frameworks to develop and deploy microservices.

The target audience hence entailed industrial practitioners daily working
with microservices, either directly part of the authors’ relationship networks or
reachable through professional networks, frameworks-oriented social networks
and technology-related portals. Furthermore, practitioners were also reached by
exploiting the snowballing sampling approach [15]. The target audience was given
the possibility to participate in the survey in the period lasting from the 1st of
March 2019 to the 31st of October 2019.

Goal and research questions The goal of the survey was to evaluate the im-
pact of open-source frameworks on the high-availability of microservices, as per
its actual perceiving by industrial practitioners daily working with microservices.
In particular, we aimed at evaluatiing their level of agreement with the state-
ments we elicited in Table 3. To this end, we established the following research
questions:

– RQ1: Which is the level of agreement of respondents concerning positive
contributions related to specific frameworks and high-availability properties?
By answering this research question, we aimed at identifying to which level
frameworks are considered to positively impact on high-availability proper-
ties.

– RQ2: Which is the level of agreement of respondents concerning negative
contributions related to specific frameworks and high-availability properties?
As for RQ1, the goal of this research question was to understand to which
level frameworks are considered to negatively impact on high-availability
properties.

Survey questions and response format The survey questions were built by
directly submitting the statements in Table 3. Respondents were then given the
possibility to make their level of agreement with such statements by marking
one of the following 3 Likert-scale responses: Strongly agree, Agree, Not agree.
We selected this type of scale to obtain more concise answers and, in turn, to
facilitate the analysis of the respondents [12].

We used an online questionnaire as survey methodology since we intend to ask
precise questions in the context of availability. Furthermore, such a methodology
is known to allow to search and explore widespread opinions on a specific topic.
For specific domains (including that considered by our study), online question-
naires offer several other advantages, e.g., the effort to handle the questionnaire
is reduced (for the participants), it is possible to navigate easily through the
questionnaire [18].

Data analysis For each response, we proceed to perform a descriptive analysis
based on the frequency of responses in order to better understanding of results.
In addition, with the aim of further elaborating the key findings regarding the
survey, we performed a series of brainstorming sessions. Obtained results are
presented and discussed in the following section.

5 Results and discussion

We hereby illustrate the outcomes of our survey. More precisely, we first show
the data about the recognised positive and negative impacts of frameworks (Sec-
tion 5.1), and we then discuss the outcomes of the study (Section 5.2).

In doing so, we shall establish the agreement on a statement by defining a
threshold based on the absolute majority of respondents (as in [7]). The latter
means that a candidate statement must obtain over a half of the votes to get
agreed, i.e., given n the total amount of respondents, it must get (n + 1)/2
votes if n is odd, or (n + 2)/2 votes if n is even. As a total of 40 practitioners
participated to our survey, this means that a candidate statement is agreed if at
least 21 respondents agree with it.

5.1 Practitioners’ recognition on considered impact of framewors

Figures 3 and 4 plot the frequencies of answers on the statements concerning
the impact of frameworks on high-availability properties. In both cases, we can

Fig. 3. Survey results regarding positive contribution of frameworks. “SA” correspond
to Strongly agree, “A” to Agree, “NA” to Not agree, and “M” to the absolute majority

Fig. 4. Survey results regarding negative contribution of frameworks. “SA” correspond
to Strongly agree, “A” to Agree, “NA” to Not agree, and “M” to the absolute majority

observe that the vast majority of respondents agrees on the proposed statements
(if we considers the sums of Strongly Agree and Agree answers), hence confirming
that our statements on the impact of frameworks on high-availability properties
are reflected by the community.

Focusing on Figure 3, we observe that, according to the responses, there is a
“strong agreement” on statements S1, S5, S8, S10 and S14, and an “agreement” on
statements S3 and S12. Statements S14 and S16 instead do not have a majority
of Strongly Agree or Agree answers, but their sum fairly outgoes the threshold.

Concerning Figure 4, we observe that respondents where lighter in agreeing
with statements, as their majority “agree” (not strongly) on all statements but S6
and S17. However, if we consider the sum of Strongly agree and Agree answers,
we observe an overall agreement on all statements.

5.2 Discussion

On the positive compensations side, the survey results indicate that RabbitMQ,
Docker, Kubernetes, and Apache Cassandra positively satisfy (Strongly agree se-
lection) properties P2, P5, P9, and P6, respectively. Regarding Apache Zookeeper
and Netflix Eureka, although respondents indicate that these frameworks are a
positive contribution to properties P4 and P9, results indicate that there is no
unanimous agreement (Agree selection) regarding the positive effect of these
frameworks for the P4 and P9.

About negative compensations, the most affected property is P12. This in-
dicates that Apache Zookeeper, Docker, Kubernetes, Apache Cassandra, and
Netflix Eureka compromise resource consumption. However, the level of agree-
ment illustrates that the respondents are not categorical with this situation since
everyone selected the Agree option. This is because, according to what we could
investigate, property P12 will be affected depending on the size of the microser-
vices project. For properties P1 and P10, the same situation occurs.

According to the results described in Figures 3 and 4, in the statement S6,
S14, S16, and S17 it is not possible to identify the level of agreement. 3 of the
4 statements correspond to MongoDB and 1 to Docker. In order to investigate
why there is no agreement in these statements, we conducted a rapid review
[4] to establish the final decision regarding which level of agreement should be
assigned for these statements.

Regarding statements of MongoDB, Ueda et al. [24] conducted an empirical
study with attention to understand the characteristics to design an infrastruc-
ture optimized for microservices. The authors mention that, since MongoDB
implements a transactional ACID model(Atomicity, Consistency, Isolation, and
Durability) on different documents, the way on how the model reference docu-
ments to ensure integrity is done by nesting documents, promoting the isolation
of the data. Likewise, the same authors describe that one of the significant dis-
advantages of MongoDB is that it does not support transactions at the moment
of updating more than one document or collection. Gadea et al. [8] also mention
this observation in the conclusions of his experience of using microservices archi-
tecture in a collaborative document editing system. Nevertheless, new MongoDB
releases (such as 4.03) provide the ability to perform multi-document transac-
tions against replica sets.
3 https://docs.mongodb.com/manual/release-notes/4.0/#multi-document-
transactions

Other empirical studies, such as [26], mention that MongoDB has the capa-
bility to aggregate, route and indexes the unique document ID automatically,
improving the performance and scalability in queries against indexed and non-
indexed collections, for various (virtual) server hardware configurations [9].

About the Docker resource consumption statement, although some authors
(such as [2] and [20]) describe that this situation depends on the project’s char-
acteristics, Casalicchio et al. [5] provide an extensive empirical study related to
docker performance. One of the conclusions emerged from the authors’ experi-
ments is related to the tendency of Docker to use high disk I/O overhead. The
authors mentioned that Docker heavily penalizes the execution time when the
number of container increase.

Therefore, the studies’ results corroborate the answers of sentences S6, S14,
S16, and S17. This means that we could take into account the answers with the
highest tendency for these sentences (S6→SA, S14→SA, S16→A, and S17→A) in
the first instance. Nevertheless, although the studies provide significant research
related to the statements’ frameworks, there is not sufficient data and evidence
to conclude irrefutably the level of agreement of the aforementioned sentences.
As future work, we plan to further investigate this finding in order to establish
a level of agreement to these sentences.

Finally, we find contributions in 9 of 12 high-availability properties. The
properties where we do not find evidence are P3, P7, and P11. The three afore-
mentioned properties are related to specific scenarios of fault recovery. To best
of our knowledge, how to recover microservices-based applications from failures
is one of the research challenges regarding availability in microservices (as also
discussed in [19]).

6 Threats to validity

We hereby discuss potential threats to the validity of our study, following the
taxonomy in [27]. Threats to internal validity describe factors that could affect
the results obtained from the study. To mitigate these threats, the participa-
tion in the survey was voluntary and anonymous to ensure that answers were
as honest as possible. Given that the availability issues are associated with spe-
cific technologies, the survey was promoted (i) in communities related to such
technologies and (ii) among developers of microservice-based applications. Fur-
thermore, we reinforced the results through interviews with practitioners with
microservices-based projects development experience.

Construct validity refers to the extent to which operationalizations of a con-
struct do actually measure what the theory says they do. The threats related
to the construct validity were mitigated by careful questionnaire design. More-
over, we piloted the questionnaire internally several times in order to refine the
vocabulary and make it as simple possible.

Threats to external validity are conditions that limit our ability to generalize
the results. In this context, the survey participants may not represent the entire
population of microservices practitioners. To mitigate this risk, we promoted the

survey in different communities to include practitioners from different software
domains. Furthermore, we decided to interview practitioners (with experience in
the development of microservices-based applications) and discuss with them our
findings in brainstorming sessions.

7 Related work

Usman et al. [25] presented DRSR, a highly available and fault-tolerant data
replication strategy for service registry in a microservice architecture. Simi-
larly, Wu et al. [28] proposed an extensible fault tolerance testing framework
for microservice-based applications based on the non-intrusive fault injection.

Tang et al. [22] proposed a distributed service discovery mechanism, which
improves the Raft algorithm according to the characteristics of the data, en-
sures the strong consistency of data between cluster nodes, and improves the
availability of service discovery. Heinrich et al. [11] argued why new solutions to
performance engineering for microservices are needed. Furthermore, the authors
identified open issues with regard to performance aware testing, monitoring, and
modeling of microservices.

Despite the significant contribution of previous studies, our study differs from
the previous ones in the discussion of positive and negative compensations in
high-availability properties related to microservices-based systems. It also dif-
fers from other existing industry-driven studies on microservices, such as [19],
[21], [6], [10] and [17]. Such studies indeed focus on identifying and discussing
advantages and disadvantages of microservices, and/or on distilling best prac-
tices. We instead focus on identifying and distilling the positive and negative
impact of frameworks on the high-availability of microservices.

8 Conclusions

Our main contributions in this paper are (i) 12 properties characterising the
high-availability of microservices (obtained by means of a systematic multivocal
review), and (ii) an exploratory study to understand how the usage of existing
open-source frameworks positively/negatively impacts on such properties. The
exploratory study consisted in a systematically analysing the issues and com-
ments in the repositories of 18 open-source microservice-based projects, which we
exploited to extract 17 statements indicating how existing open-source frame-
work impact on the high-availability of microservices. We also conducted an
online survey involving practitioners daily working on microservices, whose vast
majority agrees with the statements we identified, hence confirming that the
impact indicated by such stamements is recognised by the community.

In addition, we provide a first body of knowledge on the actual impact of
framewoks on the properties characterising the high-availability of microservices,
and confirm that selecting different frameworks differently impacts on the differ-
ent properties. We plan to work towards extending such a body of knowledge, by
including other quality attributes peculiar to microservices, e.g., scalability and

technology freedom. We also plan to exploit such a body of knowledge to devise
a decision support system, aimed at helping researchers and practitioners find-
ing suitable trade-offs for such quality attributes when designing and developing
microservice-based applications.
Acknowledgments. This work was partly supported by the following CONICYT
PCHA/Doctorado Nacional through grants 2016-21161005 and 2019-21191132; by CON-
ICYT PIA (Basal FB0821 CCTVal); and by the projects AMaCA (POR-FSE, Regione
Toscana) and DECLware (PRA_2018_66, University of Pisa).

References

1. Aderaldo, M., Mendonça, C., Pahl, C., Pooyan, J.: Benchmark requirements for
microservices architecture research. In Proceedings of the 1st International Work-
shop on Establishing the Community-Wide Infrastructure for Architecture-Based
Software Engineering (ECASE’17) pp. 8–13 (2017)

2. Anderson, C.: Docker [software engineering]. IEEE Software 32(3), 102–c3 (2015)
3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice (3rd Edi-

tion). SEI Series in Software Engineering (2013)
4. Cartaxo, B., Pinto, G., Soares, S.: The role of rapid reviews in supporting decision-

making in software engineering practice. EASE pp. 24–34 (2018)
5. Casalicchio, E., Perciballi, V.: Measuring docker performance: What a mess!!! Pro-

ceedings of the 8th ACM/SPEC on International Conference on Performance En-
gineering Companion pp. 11–16 (2017)

6. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microservice archi-
tectures: An industrial survey. In: 2018 IEEE Int. Conf. on Software Architecture
(ICSA). pp. 29–38 (2018)

7. Dougherty, K.L., Edward, J.: The properties of simple vs. absolute majority rule:
cases where absences and abstentions are important. Journal of Theoretical Politics
22(1), 85–122 (2010)

8. Gadea, C., Trifan, M., Ionescu, D., Cordea, M., Ionescu, B.: A microservices ar-
chitecture for collaborative document editing enhanced with face recognition. EEE
11th International Symposium on Applied Computational Intelligence and Infor-
matics (SACI) pp. 441–446 (2016)

9. Gan, Y., Delimitrou, C.: The architectural implications of cloud microservices.
IEEE Computer Architecture Letters 17(2), 155–158 (2018)

10. Ghofrani, J., Lübke, D.: Challenges of microservices architecture: A survey on
the state of the practice. In: Proc. of the 10th Workshop on Services and their
Composition (ZEUS 2018). pp. 1–8. CEUR-WS.org (2018)

11. Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare, L.E., Pahl, C., S.,
S., Wettinger, J.: Performance engineering for microservices: Research challenges
and directions. Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion pp. 223–226 (2017)

12. Joshi, A., Kale, S., Chandel, S., Pal, D.K.: Likert scale: Explored and explained.
British Journal of Applied Science & Technology 7(4), 396 (2015)

13. Kazman, R.: Rapid software composition by assessing untrusted com-
ponents,. SEI (2018), https://insights.sei.cmu.edu/sei_blog/2018/11/
rapid-software-composition-by-assessing-untrusted-components.html

14. Kitchenham, B., Pfleeger, S.L.: Principles of survey research part 4: questionnaire
evaluation. ACM SIGSOFT Software Engineering Notes 27(3), 20–23 (2002)

15. Kitchenham, B., Pfleeger, S.L.: Principles of survey research: part 5: populations
and samples. ACM SIGSOFT Software Engineering Notes 27(5), 17–20 (2002)

16. Márquez, G., Astudillo, H.: Actual use of architecture patterns in microservices-
based open source projects. 25th Asia-Pacific Software Engineering Conference
(APSEC) pp. 31–40 (2018)

17. Neri, D., Soldani, J., Zimmermann, O., Brogi, A.: Design principles, architectural
smells and refactorings for microservices: a multivocal review. SICS Software-
Intensive Cyber-Physical Systems (2019), [In press]

18. Punter, T., Ciolkowski, M., Freimut, B., John, I.: Conducting on-line surveys in
software engineering. International Symposium on Empirical Software Engineering
pp. 80–88 (2003)

19. Soldani, J., Tamburri, D.A., Heuvel, W.J.V.D.: The pains and gains of microser-
vices: A systematic grey literature review. Journal of Systems and Software 146,
215 – 232 (2018)

20. Stubbs, J., Moreira, W., Dooley, R.: Distributed systems of microservices using
docker and serfnode. 7th International Workshop on Science Gateways pp. 34–39
(2015)

21. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Soft-
ware 35(3), 56–62 (2018)

22. Tang, W., Wang, L., Xue, G.: Design of high availability service discovery for
microservices architecture. In: Proceedings of the 2019 3rd International Confer-
ence on Management Engineering, Software Engineering and Service Sciences. pp.
253–257. ICMSS 2019, ACM, New York, NY, USA (2019)

23. Thönes, J.: Microservices. IEEE Software 32(1), 113–116 (2015)
24. Ueda, T., Nakaike, T., Ohara, M.: Workload characterization for microservices.

IEEE international symposium on workload characterization (IISWC) pp. 1–10
(2016)

25. Usman, A., Zhang, P., Theel, O.: A highly available replicated service registry for
service discovery in a highly dynamic deployment infrastructure. In: 2018 IEEE
International Conference on Services Computing (SCC). pp. 265–268 (July 2018)

26. Viennot, N., Lecuyer, M., Bell, J., Geambasu, R., Nieh, J.: Synapse: a microservices
architecture for heterogeneous-database web applications. Proceedings of the Tenth
European Conference on Computer Systems p. 21 (2015)

27. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in software engineering. Springer Science and Business Media (2012)

28. Wu, N., Zuo, D., Zhang, Z.: An extensible fault tolerance testing framework for
microservice-based cloud applications. In: Proceedings of the 4th International
Conference on Communication and Information Processing. pp. 38–42. ICCIP ’18,
ACM, New York, NY, USA (2018)

